Nav: Home

Same but different: unique cancer traits key to targeted therapies

September 13, 2019

Melbourne researchers have discovered that the key to personalised therapies for some types of lung cancers may be to focus on their differences, not their similarities.

More than one in three lung cancers called adenocarcinomas have a common-cancer causing mutation in the gene KRAS, which is a potent cancer driver. Yet decades of attempts to develop a therapy that targets this gene have been unsuccessful.

Now scientists from the Walter and Eliza Hall Institute have shown that co-existing mutations in these cancers can give the tumour distinctive characteristics which they have successfully targeted to inhibit cancer growth. The study suggests this tactic should be investigated for targeted treatment of KRAS-positive human lung adenocarcinomas.

At a glance
  • Targeted or 'personalised' cancer treatments are not available for people with KRAS-positive lung cancers (adenocarcinomas).
  • Institute researchers identified that KRAS-positive lung tumours had different 'traits' depending on underlying co-mutations.
  • Strategies to target and block these cancer-related traits significantly slowed the growth of lung tumours, opening new strategies to target these cancers.
Targeting tumour traits

Lung cancer researchers Dr Kate Sutherland and Dr Sarah Best from the Walter and Eliza Hall Institute led the research, which was published today in the journal Nature Communications.

Dr Best said the researchers were surprised to find that co-existing mutations could play such a significant role in the characteristics of some lung cancers. "In this study, we showed that KRAS-positive lung adenocarcinomas looked and behaved very differently depending on co-existing mutations in the tumour," Dr Best said.

"Cancers with a co-mutation in the gene TP53 were flooded with immune cells, while tumours with a co-mutation in the gene KEAP1 changed their metabolism, how they make energy to fuel the tumour cell. We exploited these unique tumour traits, either by depleting the immune cells in tumour tissue or blocking the energy-producing machinery, and this proved effective in inhibiting tumour progression."

Targeted therapies to deplete immune cells or inhibit metabolic machinery were being explored in human trials for other types of cancers, Dr Best said. "Our study suggests that some patients with KRAS-positive lung adenocarcinomas could benefit from targeted therapies that exploit the differences, rather than the similarities, in these tumours. This could make a real difference for patients with these lung cancers."

Targeted treatments a game-changer

In the past few decades, there has been an explosion in the development of targeted therapies for cancer. Targeted cancer therapies have transformed treatment and survival for people with diseases including breast, blood, skin and bowel cancers.

Unfortunately for people with KRAS-positive lung cancers, targeted therapies have been elusive said Dr Sutherland.

"Researchers and pharmaceutical companies have been searching for decades for an effective therapy that targets KRAS, but have been unsuccessful. KRAS is considered 'undruggable' so we decided to look for alternative ways of attacking these cancers based on other tumour traits," Dr Sutherland said.

Dr Sutherland said understanding the nuances in tumour development was very important when trying to develop personalised therapies. "Our study suggests that a one-size-fits-all therapy would not be effective for all people with KRAS-positive lung cancers," she said.

A unique approach

The researchers studied the cancers in preclinical models and confirmed the findings in donated human lung cancer tissues from patients, in collaboration with Associate Professor Gavin Wright from St Vincent's Hospital.

"We are confident that our models reflect what is happening in patients. And the benefit of the models is that they can be used for preclinical testing of potential therapeutics, to evaluate if they show promise for treating patients," Dr Sutherland said.
The research was supported by the Australian National Health and Medical Research Council, Victorian Cancer Agency, Peter and Julie Alston Centenary Fellowship and the Victorian Government Operational Infrastructure Support Scheme.

Walter and Eliza Hall Institute

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at