Nav: Home

NASA-NOAA's Suomi NPP tracks fire and smoke from two continents

September 13, 2019

Wherever fires are burning around the world NASA-NOAA's Suomi NPP satellite's Ozone Mapping and Profiler Suite (OMPS) can track the smoke and aerosols. On Sept. 13, 2019, data from OMPS revealed aerosols and smoke from fires over both South America and North America.

Suomi's OMPS tracks the health of the ozone layer and measures the concentration of ozone in the Earth's atmosphere and can detect aerosols. Ozone is an important molecule in the atmosphere because it partially blocks harmful ultra-violet radiation from the sun. OMPS data help scientists monitor the health of this vital protective layer.

OMPS also can be used to measure concentrations of atmospheric aerosols from dust storms and similar events as well as sulfur dioxide (SO2) from volcanic eruptions. One aerosol-related OMPS product is a value known as the "aerosol index," or AI. The AI value is related to both the thickness and height of the atmospheric aerosol layer. For most atmospheric events involving aerosols, the AI ranges from 0.0 to 5.0, with 5.0 indicating heavy concentrations of aerosols that could reduce visibilities and/or impact health.

The first OMPS was launched onboard the Suomi NPP satellite in October 2011.

An aerosol is a suspension of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or anthropogenic (manmade). Examples of natural aerosols are fog, dust and geyser steam. Examples of manmade aerosols include haze (suspended particles in the lower atmosphere), particulate air pollutants and smoke.

High aerosol concentrations not only can affect climate and reduce visibility, they also can impact breathing, reproduction, the cardiovascular system, and the central nervous system, according to the U.S. Environmental Protection Agency. Since aerosols are able to remain suspended in the atmosphere and be carried along prevailing high-altitude wind streams, they can travel great distances away from their source and their effects can linger.

Fires in South America generated smoke that continues to create a long plume east into the Atlantic Ocean. Fires over western Brazil were generating aerosols at a level 2.0 on the index. Higher aerosol concentrations, as high as 4.0 were seen off the southeastern coast of Brazil as a result of the fires in the region.

In North America, Suomi NPP's OMPS detected smoke and aerosols from fires over Canada's Yukon Territories. Aerosol concentrations were very high over the Yukon fires due to a pyrocumulus event that occurred on September 11.

Pyrocumulus clouds--sometimes called "fire clouds"--are tall, cauliflower-shaped, and appear as opaque white patches hovering over darker smoke in satellite imagery. Pyrocumulus clouds are similar to cumulus clouds, but the heat that forces the air to rise (which leads to cooling and condensation of water vapor) comes from fire instead of sun-warmed ground. Under certain circumstances, pyrocumulus clouds can produce full-fledged thunderstorms, making them pyrocumulonimbus clouds.

Scientists monitor pyrocumulus clouds closely because they can inject smoke and pollutants high into the atmosphere. As pollutants are dispersed by wind, they can affect air quality over a broad area.

The image also contains a light brown area of smoke that looks like a letter "C" on its side and a low pressure system (the area of spiraled clouds) off the coast of western Canada.

Both images were created at the NASA Goddard Space Flight Center in Greenbelt, Md.

For NASA's Fire and Smoke page, visit: http://www.nasa.gov/fires

By Rob Gutro / Colin Seftor with information from https://earthdata.nasa.gov/ NASA's Goddard Space Flight Center
-end-


NASA/Goddard Space Flight Center

Related Ozone Articles:

FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.
Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.
Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.
Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.
How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.
New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.
Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.
Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.
Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.
The ozone layer continues to thin
The vital ozone layer has continued to deplete in recent years over the densely populated mid-latitudes and tropics, while it is recovering at the poles.
More Ozone News and Ozone Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.