Nav: Home

Team discovers polymorph selection during crystal growth can be thermodynamically driven

September 13, 2019

Technology is getting smaller - which is good news.

The ability to fabricate materials with optical, electrical and mechanical properties out of very small particles could have far-reaching applications. For example, micro-particles grafted with DNA can be used in medicine for better sensing, imaging and treatment delivery. An improved understanding of how these materials behave could lead to fulfilling the promise of precision medicine, among other applications.

There is still much to learn about how best to direct the fabrication of these micro-materials. The self-assembly process of DNA-functionalized micro-sized particles leads to crystallization, i.e., atoms and molecules transforming into a highly-structured form called a crystal. Crystallization begins with nucleation - the process by which atoms or molecules cluster together on the microscopic scale. If the clusters become stable and large enough, crystal growth may occur. Atoms and compounds can generally form more than one crystal structure, called polymorphism. The arrangement of particles is determined during the early stages of crystallization.

According to Jeetain Mittal, a professor of chemical and biomolecular engineering at Lehigh University, structural transformations that involve the potential for polymorphism during crystallization have conventionally been attributed to kinetic effects, or the rate of nucleation, to predict what structures may be observed when crystals form. This is line with classical nucleation theory.

Now, Mittal and his team have shown that kinetic effects may be unable to fully explain structural transformation in all polymorphic situations and that surface thermodynamics - related to crystallite size as opposed to rate - can be critical for driving transformations between crystal structures. The team found a new pathway for structural transformation from square to hexagonal lattice during crystal growth which is thermodynamically-driven.

In many previous systems, according to Mittal, the crystallites exhibiting structural polymorphism have been attributed to kinetic effects, related to nucleation rate. In their work, Mittal and his collaborators provide solid calculation to demonstrate the structural transformation can be entirely thermodynamic, in contrast to the kinetic argument, from both theoretical and computational perspectives. Further, a similar structural transformation is observed in a more detailed modeled system using a coarse-grained model representing DNA functionalized particle. This is strong evidence that such structural transformations can be much more general and can be connected back to more realistic systems.

"Understanding the crystallization process is especially important for controlling and predicting the structure produced," says Runfang Mao, a current Lehigh PhD student and co-author on the paper. "Though useful in many cases, classical nucleation theory is understood to be invalid in many systems. We show that such size-dependent structural transformation is one of those exceptions, and that it is driven by thermodynamic properties of finite-sized crystallites. To our knowledge, such size-dependent structural transformation has not been clearly illustrated elsewhere in the literature."

Their findings have been published today in Science Advances in the article "Size-dependent thermodynamic structural selection in colloidal crystallization." In addition to Mittal and Mao, authors include Evan Pretti, Hasan Zerze, Minseok Song and Yajun Ding - all current or former students in Lehigh's P.C. Rossin College of Engineering and Applied Science.

Mittal and his team studied how particular mixtures of colloids with DNA strands tethered to their surfaces crystallize into two-dimensional lattices as the colloids interact with each other. Crystallization, as Pretti explains, begins from small clusters of particles which grow and aggregate, and under certain conditions, these crystallites can start in one crystal structure and transform into another as time passes.

"We find that, for our system, these transformations can be explained based on how the relative thermodynamic stabilities of the different structures is affected by the crystallites' sizes," says Pretti. " In particular, for small enough crystallites, the thermodynamics of the surfaces become important enough that they can influence the structure, which triggers the observed transformations during self-assembly."

According to Mittal, these DNA-functionalized systems are of particular interest in the field of colloidal assembly, because of the great flexibility and variety of possibilities afforded by using different kinds of particles and sequences of DNA. Their results, however, are not limited just to such systems, but could provide a greater understanding of how other kinds of crystallization processes work and can be controlled.

The team started using standard molecular dynamics simulations to understand how their system behaved. To prove that the transformations they were seeing were of a thermodynamic origin, they took an existing method used to calculate relative thermodynamic stabilities of periodic crystalline solids, and modified it so that they could analyze their finite-sized crystallites.

"We have identified a structural transformation which is reversible and can be explained using only the thermodynamics of the finite-sized crystals themselves," says Mittal. "Our work can provide a new way to look at and explain transformations in DNA-functionalized particle systems and potentially also in other kinds of crystals."

Lehigh University

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at