Nav: Home

How microtubules branch in new directions, a first look in animals

September 13, 2019

AMHERST, Mass. - Cell biologist Thomas Maresca and senior research fellow Vikash Verma at the University of Massachusetts Amherst say they have, for the first time, directly observed and recorded in animal cells a pathway called branching microtubule nucleation, a mechanism in cell division that had been imaged in cellular extracts and plant cells but not directly observed in animal cells. Details appear this month in the Journal of Cell Biology.

In this work supported by NIH's National Institute of General Medical Sciences, the researchers set out to explore specific mechanics of cell division, what Verma calls "the rules of faithful and complete division," in fruit fly cells. In particular, they want to understand how structures called microtubules help to define where the cell splits in half during the division process.

Maresca explains, "This has been studied for a long time, since microscopy made it possible to see cells divide, but very intensely for 40 or 50 years. What are the cues that tell a cell where to divide? How does the cell know where to put the division plane? It's the ultimate conclusion of mitosis, the actual division of the cell into two."

In normal cell division, chromosomes line up near the center of the cell, where a structure called the spindle aligns copies of each chromosome by interacting with a bridge-like structure called the kinetochore. When all the chromosomes have been aligned, microtubules pull the chromosome copies apart like a zipper. The cell then physically divides at a location positioned between the segregated chromosomes to produce two daughter cells, each with a complete copy of the genome.

In imaging the microtubules, often described as nano-scale highways, the biologists noticed that the spatial cue for locating the division plane requires microtubules, Maresca says. "They grow out to touch the edges inside the cell membrane. Vikash found that the growing tips of the tubes, the 'plus-ends' that touch the membrane, say to the cell, 'This is where to divide.' Regulatory proteins get recruited to the site contacted by the plus-ends kicking into gear and a whole new pathway assembles a ring that will constrict like a purse string to split one large cell into two smaller ones."

Timing plays a role, as well, the researchers found. "It seems that all the microtubule tips have the special ability to trigger the purse-string pathway," Maresca says, "but over time, something changes and only the tips in the middle of the cell retain that ability." Referring to work published in eLife in February, he adds, "We found what we think is a very important spatial cue for how the cell positions its division plane."

Visualizing the behavior of microtubules during cell division in detail is typically hampered by the fact that so many microtubules are growing and shrinking at the same time throughout the cell, Verma says. "It's like many highways converging at the same place and time in the spindle. It looks like a Los Angeles freeway map." But by using a powerful technique called total internal reflection fluorescence (TIRF) microscopy, Verma could more easily visualize the dynamic properties of individual microtubules. Maresca adds, "We went from a stressful L.A. traffic jam into a Sunday-drive-on-a-country-road view."

That is when they witnessed the branching. Using multi-color TIRF microscopy, the researchers could now clearly see and quantitatively define the branching microtubule nucleation process. To the best of their knowledge, this had never been visualized before in real time in animal cells. "It was very exciting," Verma recalls.

Maresca says, "When you see such beautiful things right before your eyes, you just have to follow it. This project started out as an investigation of how cells define where they divide, but we saw this branching phenomenon so often and so clearly that we realized we had to look at it more closely. We don't think you could have seen the branching process as well in other model systems as you can in our fruit fly cells. It highlights the fact that every model system has its strengths and its weaknesses and, in this case, our cells and the phase at which we were imaging them just offered a uniquely beautiful, birds-eye view of branching. We could actually see all of this happening in real time before our eyes."

Once they could visualize the entire process of branching nucleation in a cell, he adds, "We knew we could next 'tag' proteins that regulate the process with different colors to further quantify fundamental parameters of the phenomenon. All of a sudden we realized that this is the first time one could see this happening in living animals cells."

Branching nucleation is fundamental and conserved, one of the essential parts of mitosis, but it's been difficult to directly visualize in other model systems, Maresca points out. "The course of this project was a reminder that some of the most exciting work we do as scientists is unplanned and, especially for microscopists, begins with seeing something in the cell unfold right before your eyes."
-end-


University of Massachusetts at Amherst

Related Cell Division Articles:

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.
Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.
Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.
Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.
Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.
Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.
Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.
Exhaustive analysis reveals cell division's inner timing mechanisms
After exploring every possible correlation, researchers shed new light on a long-standing question about what triggers cell division.
More Cell Division News and Cell Division Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.