Nav: Home

When methane-eating microbes eat ammonia instead

September 13, 2020

Some microorganisms, the so-called methanotrophs, make a living by oxidizing methane (CH4) to carbon dioxide (CO2). Ammonia (NH3) is structurally very similar to methane, thus methanotrophs also co-metabolize ammonia and produce nitrite. While this process was observed in cell cultures, the underlying biochemical mechanism was not understood. Boran Kartal, head of the Microbial Physiology Group at the Max Planck Institute for Marine Microbiology in Bremen, Germany, and a group of scientists from Radboud University in Nijmegen, The Netherlands, now shed light on an exciting missing link in the process: the production of nitric oxide (NO).

Nitric oxide is a highly reactive and toxic molecule with fascinating and versatile roles in biology and atmospheric chemistry. It is a signaling molecule, the precursor of the potent greenhouse gas nitrous oxide (N2O), depletes the ozone layer in our atmosphere, and a key intermediate in the global nitrogen cycle. It now turns out that NO is also the key for the survival of methanotrophs that face ammonia in the environment - which they do more and more as fertilizer input into nature increases. When methanotrophs co-metabolize ammonia they initially produce hydroxylamine, which inhibits other important metabolic processes, resulting in cell death. Thus, methanotrophs need to get rid of hydroxylamine as fast as possible. "Carrying a hydroxylamine-converting enzyme is a matter of life or death for methane-eating microbes", Kartal says.

For their study, Kartal and his colleagues used a methanotrophic bacterium named Methylacidiphilum fumariolicum, which originates from a volcanic mud pot, characterized by high temperatures and low pH, in the vicinity of Mount Vesuvius in Italy. "From this microbe, we purified a hydroxylamine oxidoreductase (mHAO) enzyme," reports Kartal. "Previously it was believed that mHAO enzyme would oxidize hydroxylamine to nitrite in methanotrophs. We now showed that it actually rapidly produces NO." The mHAO enzyme is very similar to the one used by "actual" ammonia oxidizers, which is quite astonishing, as Kartal explains: "It is now clear that enzymatically there is not much difference between aerobic ammonia- and methane-oxidizing bacteria. Using essentially the same set of enzymes, methanotrophs can act as de facto ammonia oxidizers in the environment. Still, how these microbes oxidize NO further to nitrite remains unknown."

The adaptation of the mHAO enzyme to the hot volcanic mud pots is also intriguing, Kartal believes: "At the amino acid level, the mHAO and its counterpart from ammonia oxidizers are very similar, but the protein we isolated from M. fumariolicum thrives at temperatures up to 80 °C, almost 30 °C above the temperature optimum of their "actual" ammonia-oxidizing relatives. Understanding how so similar enzymes have such different temperature optima and range will be very interesting to investigate."

According to Kartal, production of NO from ammonia has further implications for methane-eating microbes: "Currently there are no known methanotrophs that can make a living out of ammonia oxidation to nitrite via NO, but there could be methanotrophs out there that found a way to connect ammonia conversion to cell growth."
-end-


Max Planck Institute for Marine Microbiology

Related Methane Articles:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.
Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.
Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.
Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.
New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.