Scientists find holes etched in silicon chips can migrate

September 14, 2001

CHAPEL HILL -- Surprisingly, atomic-sized holes etched on silicon surfaces in preparation for creating silicon chips do not behave the way scientists previously believed, chemists at the University of North Carolina at Chapel Hill have discovered.

Instead of remaining where they were made, the tiny holes actually move around a bit, sometimes lining up in the equivalent of cornrows, the researchers found.

"We think this is important for several reasons," said Dr. John J. Boland, professor of chemistry at UNC. "First, it gives us a better understanding of the fundamental chemistry of etching. Previously, models of what was happening completely neglected the possibility of motion, and people thought etching was a kinetic process determined by how fast reactions occurred."

Researchers found the process is really driven by heat, and the holes can move in a diffusion process into the most energy-efficient configurations.

"This knowledge also could eventually help lead to smaller silicon chips for computers and other devices," Boland said. "The smaller a device is, the more efficient it has to be, and this information suggests we can achieve greater precision in the manufacturing process." The smoother the walls of the hole are, the better electrons can flow from the source to the immediate target, which is called the "drain," he said.

A report on the studies appears in the current (Sept. 10) issue of Physical Review Letters, a professional journal. Dr. Cari F. Herrmann, a former chemistry graduate student, worked with Boland and is first author.

By bombarding silicon surfaces with bromine or other halogen-containing chemicals, scientists and technicians create patterns in those surfaces, Boland said. Previously, the process was thought to be something like sand blasting a wall to wear away mortar or chiseling a hole in a piece of wood.

Herrmann and her mentor used a scanning tunneling microscope in real time to analyze and show what was really happening. The holes -- atoms missing at the bombardment sites -- migrate and become more stable patterns with increased heat, between 600 and 700 degrees centigrade.

"Prior to this, people thought there were two mechanisms for creating etch patterns, one for low temperatures and one for high temperatures," Boland said. "In fact, there is only one. Holes we made rearranged and continued to rearrange as we changed the temperature and ultimately tended to form the most energy-efficient structure, which looks like a different mechanism but really isn't.

"We are saying now that the roughness you get isn't from the etching but from the rearrangement of these holes, or 'vacancies,'" he said. "If we can control the interactions of atoms on the surfaces, we can control the roughness."
The National Science Foundation supported the research.

Note: Herrmann can be reached at (919) 962-5466. Boland has been delayed in Germany because of the terrorist attacks.

UNC News Services

University of North Carolina at Chapel Hill

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to