Scientists at UCSB make important discoverythat increases understanding of multiple sclerosis

September 14, 2004

(Santa Barbara, CA) --Scientists at the University of California, Santa Barbara have made an important discovery that will increase the understanding of multiple sclerosis, a debilitating disease of the central nervous system in which the myelin sheath, an insulating membrane surrounding the nerve cells in the brain and spinal cord, start to unravel for reasons as yet unknown.

In a paper appearing in today's issue (Sept. 14) of the Proceedings of the National Academy of Science, several UC Santa Barbara researchers describe the results of a study that shows why the unraveling occurs.

The myelin sheath is made up of a lipid bilayer (similar to those making up the cell membrane) wrapped many times around the nerve axon -- the part of a nerve cell through which impulses travel away from the cell body.

One specific protein, called myelin basic protein, acts to hold the myelin sheath together tightly around the axon. The axons serve as the electrical wires that connect the nerve cells, and the myelin serves as the insulation to keep the electrical impulses flowing quickly and reliably.

"If the myelin breaks down, for whatever reason, the nerve electrical impulses leak out, slow down, and generally don't work very well," says Joe Zasadzinski, professor of chemical engineering at UCSB.

Zasadzinski, with co-authors Jacob Israelachvili, professor of chemical engineering, graduate student Yufang Hu and postdoctoral fellow Ivo Doudevski, and Cynthia Husted, director of UCSB's Center for the Study of Neurodegenerative Disorders write that "We have discovered that in the progression of MS, there are small changes in the lipid composition of myelin. There is less negatively-charged lipid in the membrane and more neutral, or uncharged, lipids. Myelin basic protein is positively charged and gets in between the bilayers to link up the negatively-charged lipids and glue the myelin sheath together."

The scientists explain that the tightest seal occurs when the amount of negative charge from the lipids just match the amount of positive charge from the protein. If there is too much of either one, then the bilayers start to repel each other rather than bind. "Although we can't say why the lipid composition changes, now with this new knowledge, perhaps we can suggest methods of trying to treat the unraveling before it gets too far along," Zasadzinski says. Zasadzinski, Husted and Israelachvili also discovered that the myelin basic protein acts as a patch to fill in any holes in the myelin bilayers. "It is similar to the stuff you put in your tires to fix punctures," Zasadzinski explains. "The myelin basic protein floats around until it finds a hole, binds to the edge of the hole and then pushes the lipids to fill in the hole, insuring good insulation from the myelin sheath."
-end-
Joe Zasadzinski can be reached at 805-893-4769 Or gorilla@engineering.ucsb.edu

University of California - Santa Barbara

Related Multiple Sclerosis Articles from Brightsurf:

New therapy improves treatment for multiple sclerosis
A new therapy that binds a cytokine to a blood protein shows potential in treating multiple sclerosis, and may even prevent it.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

New therapeutic options for multiple sclerosis in sight
Strategies for treating multiple sclerosis have so far focused primarily on T and B cells.

Diet has an impact on the multiple sclerosis disease course
The short-chain fatty acid propionic acid influences the intestine-mediated immune regulation in people with multiple sclerosis (MS).

The gut may be involved in the development of multiple sclerosis
It is incompletely understood which factors in patients with multiple sclerosis act as a trigger for the immune system to attack the brain and spinal cord.

Slowing the progression of multiple sclerosis
Over 77,000 Canadians are living with multiple sclerosis, a disease whose causes still remain unknown.

7T MRI offers new insights into multiple sclerosis
Investigators from Brigham and Women's Hospital have completed a new study using 7 Tesla (7T) MRI -- a far more powerful imaging technology -- to further examine LME in MS patients

How to improve multiple sclerosis therapy
Medications currently used to treat multiple sclerosis (MS) can merely reduce relapses during the initial relapsing-remitting phase.

Vaccinations not a risk factor for multiple sclerosis
Data from over 12,000 multiple sclerosis (MS) patients formed the basis of a study by the Technical University of Munich (TUM) which investigated the population's vaccination behavior in relation to MS.

Read More: Multiple Sclerosis News and Multiple Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.