Nav: Home

New study on graphene-wrapped nanocrystals makes inroads toward next-gen fuel cells

September 14, 2017

A powdery mix of metal nanocrystals wrapped in single-layer sheets of carbon atoms, developed at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), shows promise for safely storing hydrogen for use with fuel cells for passenger vehicles and other uses. And now, a new study provides insight into the atomic details of the crystals' ultrathin coating and how it serves as selective shielding while enhancing their performance in hydrogen storage.

The study, led by Berkeley Lab researchers, drew upon a range of Lab expertise and capabilities to synthesize and coat the magnesium crystals, which measure only 3-4 nanometers (billionths of a meter) across; study their nanoscale chemical composition with X-rays; and develop computer simulations and supporting theories to better understand how the crystals and their carbon coating function together.

The science team's findings could help researchers understand how similar coatings could also enhance the performance and stability of other materials that show promise for hydrogen storage applications. The research project is one of several efforts within a multi-lab R&D effort known as the Hydrogen Materials -- Advanced Research Consortium (HyMARC) established as part of the Energy Materials Network by the U.S. Department of Energy's Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

Reduced graphene oxide (or rGO), which resembles the more famous graphene (an extended sheet of carbon, only one atom thick, arrayed in a honeycomb pattern), has nanoscale holes that permit hydrogen to pass through while keeping larger molecules at bay.

This carbon wrapping was intended to prevent the magnesium -- which is used as a hydrogen storage material -- from reacting with its environment, including oxygen, water vapor and carbon dioxide. Such exposures could produce a thick coating of oxidation that would prevent the incoming hydrogen from accessing the magnesium surfaces.

But the latest study suggests that an atomically thin layer of oxidation did form on the crystals during their preparation. And, even more surprisingly, this oxide layer doesn't seem to degrade the material's performance.

"Previously, we thought the material was very well-protected," said Liwen Wan, a postdoctoral researcher at Berkeley Lab's Molecular Foundry, a DOE Nanoscale Science Research Center, who served as the study's lead author. The study was published in the Nano Letters journal. "From our detailed analysis, we saw some evidence of oxidation."

Wan added, "Most people would suspect that the oxide layer is bad news for hydrogen storage, which it turns out may not be true in this case. Without this oxide layer, the reduced graphene oxide would have a fairly weak interaction with the magnesium, but with the oxide layer the carbon-magnesium binding seems to be stronger.

"That's a benefit that ultimately enhances the protection provided by the carbon coating," she noted. "There doesn't seem to be any downside."

David Prendergast, director of the Molecular Foundry's Theory Facility and a participant in the study, noted that the current generation of hydrogen-fueled vehicles power their fuel cell engines using compressed hydrogen gas. "This requires bulky, heavy cylindrical tanks that limit the driving efficiency of such cars," he said, and the nanocrystals offer one possibility for eliminating these bulky tanks by storing hydrogen within other materials.

The study also helped to show that the thin oxide layer doesn't necessarily hinder the rate at which this material can take up hydrogen, which is important when you need to refuel quickly. This finding was also unexpected based on the conventional understanding of the blocking role oxidation typically plays in these hydrogen-storage materials.

That means the wrapped nanocrystals, in a fuel storage and supply context, would chemically absorb pumped-in hydrogen gas at a much higher density than possible in a compressed hydrogen gas fuel tank at the same pressures.

The models that Wan developed to explain the experimental data suggest that the oxidation layer that forms around the crystals is atomically thin and is stable over time, suggesting that the oxidation does not progress.

The analysis was based, in part, around experiments performed at Berkeley Lab's Advanced Light Source (ALS), an X-ray source called a synchrotron that was earlier used to explore how the nanocrystals interact with hydrogen gas in real time.

Wan said that a key to the study was interpreting the ALS X-ray data by simulating X-ray measurements for hypothetical atomic models of the oxidized layer, and then selecting those models that best fit the data. "From that we know what the material actually looks like," she said.

While many simulations are based around very pure materials with clean surfaces, Wan said, in this case the simulations were intended to be more representative of the real-world imperfections of the nanocrystals.

A next step, in both experiments and simulations, is to use materials that are more ideal for real-world hydrogen storage applications, Wan said, such as complex metal hydrides (hydrogen-metal compounds) that would also be wrapped in a protective sheet of graphene.

"By going to complex metal hydrides, you get intrinsically higher hydrogen storage capacity and our goal is to enable hydrogen uptake and release at reasonable temperatures and pressures," Wan said.

Some of these complex metal hydride materials are fairly time-consuming to simulate, and the research team plans to use the supercomputers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) for this work.

"Now that we have a good understanding of magnesium nanocrystals, we know that we can transfer this capability to look at other materials to speed up the discovery process," Wan said.
-end-
The Advanced Light Source, Molecular Foundry, and National Energy Research Scientific Computing Center are DOE Office of Science User Facilities.

This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

The Magic of Hydrogen Peroxide
by Emily Thacker (Author)

An Ounce of Hydrogen Peroxide is Worth a Pound of Cure Hydrogen peroxide is trusted by every hospital and emergency room in the country for its remarkable ability to kill deadly germs like E. coli and the swine flu virus. In fact, it has attracted so much interest from doctors that over 6000 articles about it have appeared in scientific publications around the world. Research has discovered that hydrogen peroxide enables your immune system to function properly and fight infection and disease. Doctors have found it can shrink tumors and treat allergies, Alzheimer’s, asthma, clogged arteries,... View Details


Hydrogen: The Essential Element
by John S. Rigden (Author)

Seduced by simplicity, physicists find themselves endlessly fascinated by hydrogen, the simplest of atoms. Hydrogen has shocked, it has surprised, it has embarrassed, it has humbled--and again and again it has guided physicists to the edge of new vistas where the promise of basic understanding and momentous insights beckoned. The allure of hydrogen, crucial to life and critical to scientific discovery, is at the center of this book, which tells a story that begins with the big bang and continues to unfold today.

In this biography of hydrogen, John Rigden shows how this singular atom,... View Details


The Hydrogen Sonata (Culture)
by Iain M. Banks (Author)

The New York Times bestselling Culture novel...
The Scavenger species are circling. It is, truly, provably, the End Days for the Gzilt civilization.

An ancient people, organized on military principles and yet almost perversely peaceful, the Gzilt helped set up the Culture ten thousand years earlier and were very nearly one of its founding societies, deciding not to join only at the last moment. Now they've made the collective decision to follow the well-trodden path of millions of other civilizations; they are going to Sublime, elevating themselves to a new and almost... View Details


2014 True Power of Hydrogen Peroxide, Miracle Path To Wellness - Mary Wright, goes beyond One Minute Cure
by Mary Wright (Author)

The 2014 Publication the True Power of Hydrogen Peroxide, Miracle Path To Wellness (Retail $27.95) is an extraordinary book unlike any prior book on the topic of Hydrogen Peroxide therapy and oxygenation. Well documented but also easy to read, the author gives step-by-step instructions and guidelines to personalize your health and wellness protocol specifically for you for internal and extra body health and wellness, plus the many ways to use hydrogen peroxide in your life. It also warns of ways not to use hydrogen peroxide, something you do not find in other books. Yet the book does not stop... View Details


Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology.

Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including:

ESPMs (Electrolyzer Specific... View Details


Hydrogen Peroxide: Miraculous Cures - Discover the Hidden Health and Beauty Benefits of Hydrogen Peroxide (Hydrogen Peroxide Cures - Your Definitive Guide to Healing and Prevention)
by Sandra Levins (Author)

Hydrogen Peroxide - Everything You Need to Know! Miraculous Cures - Discover the Hidden Health and Beauty Benefits of Hydrogen Peroxide Hydrogen Peroxide is a natural substance that most people simply overlook. What you are about to find out will literally blow your mind. That a substance you can get inexpensively almost anywhere can boost your health, heal, save you money, and so much more. The truth is - Hydrogen Peroxide does so much, yet the big companies simply can not market it so unfortunately most people are unaware of just how amazing this substance in the brown bottle can be.... View Details


Hydrogen Peroxide: Discover the Amazing Natural Health, Household and Healing Benefits of This Miracle in a Bottle
by Megan Meyer (Author)

Hydrogen Peroxide: Discover the Amazing Natural Health, Household and Healing Benefits of This Miracle in a Bottle

"First off the bonus gift is a great addition to what is already an amazing book! I really have learned a lot from this book and cannot wait to get started using hydrogen peroxide around my home." - Amy Ryan

"Learnt a lot from this, quite surprised at how useful hydrogen peroxide actually can be!" - mrk8

Are You Looking For A Healthy Way To Keep Your Entire Home Clean Without The Harmful Effects Of Toxic Chemicals?

Do You Want... View Details


Hydrogen Peroxide: Miraculous Hydrogen Peroxide Cure For Health and Beauty: (Hydrogen Peroxide Miracle, Hydrogen Peroxide Cures, Hydrogen Peroxide Uses, Hydrogen Peroxide Handbook)
by Samar Cakir (Author)

Hydrogen Peroxide: Miraculous Hydrogen Peroxide Cure For Health and Beauty What can you find at any store, costs under two bucks, and can offer hundreds of benefits and uses? The answer is HYDROGEN PEROXIDE! Hydrogen peroxide is considered to be an inexpensive product that can be found almost anywhere, including at most dollar stores and grocers. Though, it is almost certain that you’ll find hydrogen peroxide at your local pharmacy. Learn about how hydrogen peroxide can help you in your everyday life in the pages of this book. This book teaches you how to make your life easier with hydrogen... View Details


Hydrogen Peroxide Cure: Learn the Extraordinary Cures, Benefits, and Healing Properties this Magical Elixir has to Offer Using Hydrogen Peroxide to ... and Health Benefits of Hydrogen Peroxide)
by Juliette McKnight (Author)

Hydrogen Peroxide Cures: Using Hydrogen Peroxide to Cure and Treat Common Ailments Scientifically Proven: The Secret Guide to Hydrogen Peroxide Cures About the Book: Hydrogen Peroxide Cures Hydrogen Peroxide Cures: Using Hydrogen Peroxide to Cure and Treat Common Ailments Hydrogen peroxide has been known as one of the most effective, and safest treatments and cures for a large variety of ailments since the early 1900s. So why is it that using it is so controversial? And is it the palliative it really promises to be? In “Hydrogen Peroxide Cures: Using Hydrogen Peroxide to Cure and... View Details


Dark Sun: The Making of the Hydrogen Bomb
by Richard Rhodes (Author)

Here, for the first time, in a brilliant, panoramic portrait by the Pulitzer Prize-winning author of The Making of the Atomic Bomb, is the definitive, often shocking story of the politics and the science behind the development of the hydrogen bomb and the birth of the Cold War.

Based on secret files in the United States and the former Soviet Union, this monumental work of history discloses how and why the United States decided to create the bomb that would dominate world politics for more than forty years. View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Peering Deeper Into Space
The past few years have ushered in an explosion of new discoveries about our universe. This hour, TED speakers explore the implications of these advances — and the lingering mysteries of the cosmos. Guests include theoretical physicist Allan Adams, planetary scientist Sara Seager, and astrophysicists Natasha Hurley-Walker and Jedidah Isler.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.