Nav: Home

Parkinson's disease and prion diseases: Discovery of a molecular link

September 14, 2017

Parkinson's disease and prion diseases are very different from each other as regards both origins and course. Nonetheless, a research group of SISSA's, headed by Professor Giuseppe Legname, has discovered an unexpected and important link between the two pathologies. According to the study recently published in the journal Scientific Reports, the link is given by the complex interaction between two different proteins present in our nerve cells: the so-called α-synuclein, in its aggregated form, and the prion protein PrPC, the molecule which is responsible, in its altered version, for very serious syndromes such as the Creuzfeldt Jacob disease.

The presence of α-synuclein deposits in brain cells is typical of diseases technically called synucleinopathies, among which, for instance, Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. However, the modalities according to which these aggregates form and spread were unknown up until now. This study has discovered that α-synuclein actually makes use of the action of the prion protein to spread and deposit in the brain. This seems to favour the formation of these deposits and their spreading among brain cells.

But that's not all. While the activity of the prion protein seems to support the development of synucleopathies, α-synuclein deposits seem to slacken the course of prion diseases. In fact, this research has proven that α-synuclein fibrils block the deposit of prions in nerve cells, thus preventing their replication. This surprising effect is corroborated by further evidence already found in the pathology: in fact, the course of the disease results to be slower in patients affected by prion diseases presenting α-synuclein deposits in nerve cells.

This study - whose practical implications are already being considered - benefitted from the participation of researchers also from Fondazione Carlo Besta in Milan, ELETTRA Sincrotrone in Trieste and the University of Trieste.
-end-


Scuola Internazionale Superiore di Studi Avanzati

Related Nerve Cells Articles:

How hearing loss can change the way nerve cells are wired
Even short-term blockages in hearing can lead to remarkable changes in the auditory system, altering the behavior and structure of nerve cells that relay information from the ear to the brain, according to a new University at Buffalo study.
Lab-grown nerve cells make heart cells throb
Researchers at Johns Hopkins report that a type of lab-grown human nerve cells can partner with heart muscle cells to stimulate contractions.
Nerve-insulating cells more diverse than previously thought
Oligodendrocytes, a type of brain cell that plays a crucial role in diseases such as multiple sclerosis, are more diverse than have previously been thought, according to a new study by researchers at Karolinska Institutet in Sweden.
Aggregated protein in nerve cells can cause ALS
Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord.
Aggression causes new nerve cells to be generated in the brain
A group of neurobiologists from Russia and the USA, including Dmitry Smagin, Tatyana Michurina, and Grigori Enikolopov from Moscow Institute of Physics and Technology, have proven experimentally that aggression has an influence on the production of new nerve cells in the brain.
Researchers grow retinal nerve cells in the lab
Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain.
Nerve cells warn brain of damage to the inner ear
Some nerve cells in the inner ear can signal tissue damage in a way similar to pain-sensing nerve cells in the body, according to new research from Johns Hopkins.
It takes a lot of nerve: Scientists make cells to aid peripheral nerve repair
Peripheral nerve injuries, such as those resulting from neuropathies, physical trauma or surgery, are common and can cause partial or complete loss of nerve function and a reduced quality of life.
Nerve cells use each other as maps
When nerve cells form in an embryo they have to be guided to their final position by navigating a kind of molecular and cellular 'map' in order to function properly.
What hundreds of biomolecules tell us about our nerve cells
Researchers at the Luxembourg Centre for Systems Biomedicine, of the University of Luxembourg, have, under Dr.

Related Nerve Cells Reading:

Culturing Nerve Cells, Second Edition (Cellular and Molecular Neuroscience)
by Gary Banker (Editor), Kimberly Goslin (Editor)

A do-it-yourself manual for culturing nerve cells, complete with recipes and protocols.

Because neurons and glia in culture are remarkably similar to those in situ, culture systems make it possible to identify significant cell interactions and to elucidate their mechanisms. This book is in many ways a do-it-yourself manual for culturing nerve cells, complete with recipes and protocols. But it also provides an understanding of the principles behind the protocols. In effect the contributors invite you into their labs and provide much of the information you would obtain from such... View Details


Nerve Cells and Animal Behaviour
by Peter Simmons (Author), David Young (Author)

An extensively revised third edition of this introduction to neuroethology - the neuronal basis of animal behaviour - for zoology, biology and psychology undergraduate students. The book focuses on the roles of individual nerve cells in behaviour, from simple startle responses to complex behaviours such as route learning by rats and singing by crickets and birds. It begins by examining the relationship between brains and behaviour, and showing how study of specialised behaviours reveals neuronal mechanisms that control behaviour. Information processing by nerve cells is introduced using... View Details


Nerve Cells and Insect Behavior: With an Appreciation by John G. Hildebrand, Revised edition
by Kenneth D. Roeder (Author)

The strike of a praying mantis's forelegs is so fast that, once they are set in motion, the mantis cannot control its aim. How does it ever manage to catch a fly? A moth negotiating the night air hears the squeak of a hunting bat on the wing, and tumbles out of harm's way. How?

Insects are ideal subjects for neurophysiological studies, and at its simplest level this classic book relates the activities of nerve cells to the activities of insects, something that had never been attempted when the book first appeared in 1963. In several elegant experiments--on the moth, the cockroach,... View Details


Nerve Endings: The Discovery Of The Synapse
by Richard, M.D. Rapport (Author)

The dual stories of two doctors who jointly received the 1906 Nobel Prize follows the discoveries of Spanish countryside physician Cajal and Italian researcher Golgi, who raced against each other from primitive kitchen laboratories, made pivotal contributions to brain science, and ended their careers supporting significantly different theories. 15,000 first printing. View Details


Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

Addressing chronic back pain, diabetes, joint replacements, osteoarthritis, neurological issues, and more, Joseph “Dr. Joe” Christiano reveals
how this cutting-edge therapy can rapidly replace damaged cells in the body with no side effects or allergic reactions.
If you have been disappointed by ineffective treatments, the answer to improving your health may be in your stem cells. Dr. Joe explains
how adult stem cell therapy and activators are two of the new technologies in regenerative medicine that will be game changers in medical history.
... View Details


Governing Behavior: How Nerve Cell Dictatorships and Democracies Control Everything We Do
by Ari Berkowitz (Author)

From simple reflexes to complex choreographies of movement, all animal behavior is governed by a nervous system. But what kind of government is it―a dictatorship or a democracy?

Nervous systems consist of circuits of interconnected nerve cells (neurons) that transmit and receive information via electrical signals. Every moment, each neuron adds up stimulating and inhibiting inputs from many other neurons to determine whether to send an electrical signal to its recipients. Some circuits are dominated by a single “dictator” neuron that gathers information from many sources and... View Details


Culturing Nerve Cells (BRADFORD BOOKS)
by Gary Banker (Editor), Kimberly Goslin (Editor), Charles F. Stevens (Editor)

This do-it-yourself manual describes complete recipes and protocols for biological scientists, particularly neurobiologists, who want to learn how to grow neurons in culture and how to do it well. Moreover, it provides an understanding of the principles behind the protocols. Offering a more coherent overview of techniques than the usual compendium of methods sections, Culturing Nerve Cells also takes into account the numerous details that can make the difference between success and failure by asking experienced culturists to share their technical expertise.

Introductory... View Details


Principles of Neural Science, Fifth Edition (Principles of Neural Science (Kandel))
by Eric R. Kandel (Editor), James H. Schwartz (Editor), Thomas M. Jessell (Editor), Steven A. Siegelbaum (Editor), A. J. Hudspeth (Editor)

Now updated: the definitive neuroscience resource―from Eric R. Kandel, MD (winner of the Nobel Prize in 2000); James H. Schwartz, MD, PhD; Thomas M. Jessell, PhD; Steven A. Siegelbaum, PhD; and A. J. Hudspeth, PhD

A Doody's Core Title for 2017!

900 full-color illustrations

Deciphering the link between the human brain and behavior has always been one of the most intriguing―and often challenging―aspects of scientific endeavor. The sequencing of the human genome, and advances in molecular biology, have illuminated the... View Details


Cellular Physiology of Nerve and Muscle
by Gary G. Matthews (Author)

Cellular Physiology of Nerve and Muscle, Fourth Edition offers a state of the art introduction to the basic physical, electrical and chemical principles central to the function of nerve and muscle cells. The text begins with an overview of the origin of electrical membrane potential, then clearly illustrates the cellular physiology of nerve cells and muscle cells. Throughout, this new edition simplifies difficult concepts with accessible models and straightforward descriptions of experimental results.

An all-new introduction to electrical signaling in the nervous... View Details


Axonal Branching and Recovery of Coordinated Muscle Activity after Transsection of the Facial Nerve in Adult Rats (Advances in Anatomy, Embryology and Cell Biology)
by Doychin N. Angelov (Author), Orlando Guntinas-Lichius (Author), Konstantin Wewetzer (Author), Wolfram Neiss (Author), Michael Streppel (Author)

Facial nerve surgery inevitably leads to partial pareses, abnormally associated movements and pathologically altered reflexes. The reason for this "post-paralytic syndrome" is the misdirected reinnervation of targets, which consists of two major components. First, due to malfunctioning axonal guidance, a muscle gets reinnervated by a "foreign" axon, that has been misrouted along a "wrong" fascicle. Second, the supernumerary collateral branches emerging from all transected axons simultaneously innervate antagonistic muscles and cause severe impairment of their coordinated activity. Since it... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Peering Deeper Into Space
The past few years have ushered in an explosion of new discoveries about our universe. This hour, TED speakers explore the implications of these advances — and the lingering mysteries of the cosmos. Guests include theoretical physicist Allan Adams, planetary scientist Sara Seager, and astrophysicists Natasha Hurley-Walker and Jedidah Isler.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.