Nav: Home

Plant geneticists develop a new application of CRISPR to break yield barriers in crops

September 14, 2017

Cold Spring Harbor, N.Y. - Scientists at Cold Spring Harbor Laboratory (CSHL) have harnessed the still untapped power of genome editing to improve agricultural crops. Using tomato as an example, they have mobilized CRISPR/Cas9 technology to rapidly generate variants of the plant that display a broad continuum of three separate, agriculturally important traits: fruit size, branching architecture and overall plant shape. All are major components in determining how much a plant will yield. The method is designed to work in all food, feed, and fuel crops, including the staples rice, maize, sorghum and wheat.

"Current rates of crop yield increases won't meet the planet's future agricultural demands as the human population grows," says CSHL Professor Zachary Lippman, who led the research. "One of the most severe limitations is that nature hasn't provided enough genetic variation for breeders to work with, especially for the major yield traits that can involve dozens of genes. Our lab has now used CRISPR technology to generate novel genetic variation that can accelerate crop improvement while making its outcomes more predictable."

The team's experiments, published today in Cell, involve using CRISPR "scissors" to make multiple cuts within three tomato genome sequences known as a promoters -- areas of DNA near associated genes which help regulate when, where, and at what level these "yield" genes are active during growth. In this way generating multiple sets of mutations within each of these regulatory regions, the scientists were able to induce a wide range of changes in each of the three targeted traits.

"What we demonstrated with each of the traits," explains Lippman, "was the ability to use CRISPR to generate new genetic and trait variation that breeders can use to tailor a plant to suit conditions. Each trait can now be controlled in the way a dimmer switch controls a light bulb."

By using CRISPR to mutate regulatory sequences -- the promoters of relevant "yield" genes rather than the genes themselves - the CSHL team finds that they can achieve a much subtler impact on quantitative traits. Fine-tuning gene expression rather than deleting or inactivating the proteins they encode is most likely to benefit commercial agriculture because of the flexibility such genetic variation provides for improving yield traits.

"Traditional breeding involves great time and effort to adapt beneficial variants of relevant genes to the best varieties, which must continuously be improved every year," says Lippman. "Our approach can help bypass this constraint by directly generating and selecting for the most desirable variants controlling gene activity in the context of other natural mutations that benefit breeding. We can now work with the native DNA and enhance what nature has provided, which we believe can help break yield barriers."

Each of the mutated areas creates what are known as quantitative trait loci (QTL). In any given plant, QTL have arisen naturally over thousands of years, the result of spontaneous mutations that caused subtle changes in yield traits. Searching for and exploiting QTL from nature has been an objective of plant breeders for centuries, but the most valuable QTL - those that cause subtle changes in traits - are rare. Lippman and his team have now shown that CRISPR-generated QTL can be combined with existing QTL to create "toolkits" of genetic variation that exceed what is found in nature.
-end-
The research discussed here was supported by a PEW Latin American Fellowship; a National Science Foundation Postdoctoral Research Fellowship in Biology grant (IOS- 1523423); a National Science Foundation Plant Genome Research Program grant (IOS-1732253); and a National Science Foundation Plant Genome Research Program grant (IOS-1546837).

"Engineering quantitative trait variation for crop improvement by genome editing" appears online in Cell September 14, 2017. The authors are: Daniel Rodríguez-Leal, Zachary H. Lemmon, Jarrett Man, Madelaine E. Bartlett, and Zachary B. Lippman. The paper can be viewed at: http://www.cell.com/cell/newarticles

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program hosts more than 12,000 scientists from around the world each year on its campuses in Long Island and in Suzhou, China. The Laboratory's education arm also includes an academic publishing house, a graduate school and programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Cold Spring Harbor Laboratory

Related Genetic Variation Articles:

Poor anti-VEGF responses linked to genetic variation in immune regulation
Though reducing VEGF signaling with anti-VEGF therapies has positive effects in many patients with wet age-related macular degeneration, some individuals continue to experience vision deterioration during treatment.
Out of sync: How genetic variation can disrupt the heart's rhythm
New research from the University of Chicago shows how deficits in a specific pathway of genes can lead to the development of atrial fibrillation, a common irregular heartbeat, which poses a significant health risk.
New insights into human genetic variation revealed: Nature paper
A powerful new analysis of the protein-coding region of the human genome known as the exome will boost efforts to pinpoint clinically relevant genetic variations linked to human disease.
Defining the consequences of genetic variation on a proteome-wide scale
Combining two emerging large-scale technologies for the first time -- multiplexed mass spectrometry and a mouse population with a high level of natural genetic diversity --researchers at Harvard Medical School (HMS) and The Jackson Laboratory (JAX) can crack an outstanding question in biology and medicine: how genetic variants affect protein levels.
RNA splicing mutations play major role in genetic variation and disease
RNA splicing is a major underlying factor that links mutations to complex traits and diseases, according to an exhaustive analysis of gene expression in whole genome and cell line data.
Genetic variation shown in patients with severe vascular complications of infection
Major infections such as influenza and bacterial sepsis kill millions of people each year, often resulting from dangerous complications that impair the body's blood vessels.
Genetic variation may explain Asian susceptibility to Kawasaki disease
Scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Yokohama, Japan, in collaboration with researchers from a number of hospitals around Japan, have found two variations in a gene called ORAI1, one of which may help explain why people of Asian descent are more susceptible to Kawasaki disease, a poorly understand ailment that mostly afflicts young children.
Enormous genetic variation may shield tumors from treatment
The most rigorous genetic sequencing ever carried out on a single tumor reveals far greater genetic diversity among cancer cells than anticipated, more than 100 million distinct mutations within the coding regions of its genes.
Genetic variation is key to fighting viruses
Using a genome-wide association study, EPFL scientists have identified subtle genetic changes that can cause substantial differences to how we fight viral infections.
Poor survival in multiple myeloma patients linked to genetic variation
Researchers have found that multiple myeloma patients with a genetic variation in the gene FOPNL die on average 1-3 years sooner than patients without it.

Related Genetic Variation Reading:

Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life (Life and Mind: Philosophical Issues in Biology and Psychology)
by Eva Jablonka (Author), Marion J. Lamb (Author), Anna Zeligowski (Illustrator)

Ideas about heredity and evolution are undergoing a revolutionary change. New findings in molecular biology challenge the gene-centered version of Darwinian theory according to which adaptation occurs only through natural selection of chance DNA variations. In Evolution in Four Dimensions, Eva Jablonka and Marion Lamb argue that there is more to heredity than genes. They trace four "dimensions" in evolution -- four inheritance systems that play a role in evolution: genetic, epigenetic (or non-DNA cellular transmission of traits), behavioral, and symbolic (transmission through language and... View Details


Genetic Variation: A Laboratory Manual
by Michael P. Weiner (Editor), Stacey Gabriel (Editor), J. Claiborne Stephens (Editor)

Genetic Variation: A Laboratory Manual is the first compendium of protocols specifically geared towards genetic variation studies, and includes thorough discussions on their applications for human and model organism studies. Intended for graduate students and professional scientists in clinical and research settings, it covers the complete spectrum of genetic variation--from SNPs and microsatellites to more complex DNA alterations, including copy number variation. Written and edited by leading scientists in the field, the early sections of the manual are devoted to study design and generating... View Details


Human Biological Variation, 2nd Edition
by James H. Mielke (Author), Lyle W. Konigsberg (Author), John H. Relethford (Author)

Authoritative yet accessible, Human Biological Variation, Second Edition, opens with an engaging introduction to basic genetics and the evolutionary forces that set the stage for understanding human diversity. It goes on to offer a clear and detailed discussion of molecular genetics, including its uses and its relationship to anthropological and evolutionary models. The text features up-to-date discussions of classic genetic markers (blood groups, enzymes, and proteins) along with extensive background on DNA analysis and coverage of satellite DNA, single nucleotide polymorphisms... View Details


Mutants: On Genetic Variety and the Human Body
by Armand Marie Leroi (Author)

Visit Armand Marie Leroi on the web: http://armandleroi.com/index.html

Stepping effortlessly from myth to cutting-edge science, Mutants gives a brilliant narrative account of our genetic code and the captivating people whose bodies have revealed it—a French convent girl who found herself changing sex at puberty; children who, echoing Homer’s Cyclops, are born with a single eye in the middle of their foreheads; a village of long-lived Croatian dwarves; one family, whose bodies were entirely covered with hair, was kept at the Burmese royal court for four generations and gave Darwin... View Details


Benign and Pathological Chromosomal Imbalances: Microscopic and Submicroscopic Copy Number Variations (CNVs) in Genetics and Counseling
by Thomas Liehr (Author)

Benign & Pathological Chromosomal Imbalances systematically clarifies the disease implications of cytogenetically visible copy number variants (CG-CNV) using cytogenetic assessment of heterochromatic or euchromatic DNA variants. While variants of several megabasepair can be present in the human genome without clinical consequence, visually distinguishing these benign areas from disease implications does not always occur to practitioners accustomed to costly molecular profiling methods such as FISH, aCGH, and NGS.

As technology-driven approaches like FISH and aCGH have yet to... View Details


Genetic Variation and Disorders in Peoples of African Origin (Johns Hopkins Series in Contemporary Medicine and Public Health)
by Dr. James E. Bowman MD (Author), Dr. Robert F. Murray Jr. MD MS (Author)

"The most comprehensive treatment of genetic variation and disorders in 'peoples of African origin' yet to appear. It is an encyclopedic work, broad in the scope of its mission and commendable in its achievement." -- American Journal of Human Genetics

"This volume is an excellent introduction to an interesting and important topic and is recommended for students, practitioners, and teachers in human genetics, biological anthropology, medicine, the health professions, and biology in general." -- Quarterly Review of Biology

The misuse of evidence of genetic differences among... View Details


Genetic Variation and Human Disease: Principles and Evolutionary Approaches (Cambridge Studies in Biological and Evolutionary Anthropology)
by Kenneth M. Weiss (Author)

Modern laboratory and computing advances have made it possible to identify which genes are responsible for a disease (or other biological traits) and to identify those genes. This book presents a survey of the methods that are being used to generate these successes, especially to study disease in families. The methods of epidemiology and genetics are surveyed, and related to molecular genetic data, with examples from both pediatric and chronic disease. The pattern of variation that has been found is best understood from the evolutionary perspective. Because these methods and ideas apply to... View Details


Adaptive Genetic Variation in the Wild
by Timothy A. Mousseau (Editor), Barry Sinervo (Editor), John A. Endler (Editor)

Two of the great mysteries of biology yet to be explored concern the distribution and abundance of genetic variation in natural populations and the genetic architecture of complex traits. These are tied together by their relationship to natural selection and evolutionary history, and some of the keys to disclosing these secrets lie in the study of wild organisms in their natural environments.
This book, featuring a superb selection of papers from leading authors, summarizes the state of current understanding about the extent of genetic variation within wild populations and the ways to... View Details


Human Evolutionary Genetics
by Mark Jobling (Author), Edward Hollox (Author), Toomas Kivisild (Author), Chris Tyler-Smith (Author)

Now in full-color, the Second Edition of Human Evolutionary Genetics has been completely revised to cover the rapid advances in the field since publication of the highly regarded First Edition. Written for upper-level undergraduate and graduate students, it is the only textbook to integrate genetic, archaeological, and linguistic perspectives on human evolution, and to offer a genomic perspective, reflecting the shift from studies of specific regions of the genome towards comprehensive genomewide analyses of human genetic diversity.

Human Evolutionary Genetics is... View Details


Human Variation: A Genetic Perspective on Diversity, Race, and Medicine
by Aravinda Chakravarti (Editor)

Since the appearance of modern humans in Africa around 200,000 years ago, we have migrated around the globe and accumulated genetic variations that affect various traits, including our appearance, skin color, food tolerance, and susceptibility to different diseases. Large-scale DNA sequencing is now allowing us to map the patterns of human genetic variation more accurately than ever before, trace our ancestries, and develop personalized therapies for particular diseases. It is also reinforcing the idea that human populations are far from homogeneous, are highly intermixed, and do not fall... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Peering Deeper Into Space
The past few years have ushered in an explosion of new discoveries about our universe. This hour, TED speakers explore the implications of these advances — and the lingering mysteries of the cosmos. Guests include theoretical physicist Allan Adams, planetary scientist Sara Seager, and astrophysicists Natasha Hurley-Walker and Jedidah Isler.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.