Nav: Home

'Mysterious' ancient creature was definitely an animal, research confirms

September 14, 2017

'Mysterious' ancient creature was definitely an animal, research confirms

It lived well over 550 million years ago, is known only through fossils and has variously been described as looking a bit like a jellyfish, a worm, a fungus and lichen. But was the 'mysterious' Dickinsonia an animal, or was it something else?

A new study by researchers at the universities of Oxford, Cambridge, Bristol, and the British Geological Survey provides strong proof that Dickinsonia was an animal, confirming recent findings suggesting that animals evolved millions of years before the so-called Cambrian Explosion of animal life.

The study is published in the journal Proceedings of the Royal Society B.

Lead author on the paper is Dr Renee Hoekzema, a PhD candidate in Oxford University's Mathematical Institute who carried out this research while completing a previous PhD in Oxford's Department of Earth Sciences. She said: 'Dickinsonia belongs to the Ediacaran biota - a collection of mostly soft-bodied organisms that lived in the global oceans between roughly 580 and 540 million years ago. They are mysterious because despite there being around 200 different species, very few of them resemble any living or extinct organism, and therefore what they were, and how they relate to modern organisms, has been a long-standing palaeontological mystery.'

In 1947, Dickinsonia became one of the first described Ediacaran fossils and was initially thought to be an organism similar to a jellyfish. Since then, its strange body plan has been compared to that of a worm, a placozoan, a bilaterian and several non-animals including fungi, lichens and even entirely extinct groups.

Co-author Dr Alex Liu, from the Department of Earth Sciences at the University of Cambridge, said: 'Discriminating between these different hypotheses has been difficult, as there are so few morphological features in Dickinsonia to compare to modern organisms. In this study we took the approach of looking at populations of this organism, including assumed juvenile and adult individuals, to assess how it grew and to try to work out how to classify it from a developmental perspective.'

The research was carried out on the basis of a widely held assumption that growth and development are 'conserved' within lineages - in other words, the way a group of organisms grows today would not have changed significantly from the way its ancestors grew millions of years ago.

Dickinsonia is composed of multiple 'units' that run down the length of its body. The researchers counted the number of these units in multiple specimens, measured their lengths and plotted these against the relative 'age' of the unit, assuming growth from a particular end of the organism. This data produced a plot with a series of curves, each of which tracked how the organism changed in the size and number of units with age, enabling the researchers to produce a computer model to replicate growth in the organism and test previous hypotheses about where and how growth occurred.

Dr Hoekzema said: 'We were able to confirm that Dickinsonia grows by both adding and inflating discrete units to its body along its central axis. But we also recognised that there is a switch in the rate of unit addition versus inflation at a certain point in its life cycle. All previous studies have assumed that it grew from the end where each "unit" is smallest, and was therefore considered to be youngest. We tested this assumption and interpreted our data with growth assumed from both ends, eventually coming to the conclusion that people have been interpreting Dickinsonia as having grown at the wrong end for the past 70 years.

'When we combined this growth data with previously obtained information on how Dickinsonia moved, as well as some of its morphological features, we were able to reject all non-animal possibilities for its original biological affinity and show that it was an early animal, belonging to either the Placozoa or the Eumetazoa.

'This is one of the first times that a member of the Ediacaran biota has been identified as an animal on the basis of positive evidence.'

Dr Liu added: 'This finding demonstrates that animals were present among the Ediacaran biota and importantly confirms a number of recent findings that suggest animals had evolved several million years before the "Cambrian Explosion" that has been the focus of attention for studies into animal evolution for so long.

'It also allows Dickinsonia to be considered in debates surrounding the evolution and development of key animal traits such as bilateral symmetry, segmentation and the development of body axes, which will ultimately improve our knowledge of how the earliest animals made the transition from simple forms to the diverse range of body plans we see today.'

-end-



University of Oxford

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Radiolab Presents: Anna in Somalia
This week, we are presenting a story from NPR foreign correspondent Gregory Warner and his new globe-trotting podcast Rough Translation. Mohammed was having the best six months of his life - working a job he loved, making mixtapes for his sweetheart - when the communist Somali regime perp-walked him out of his own home, and sentenced him to a lifetime of solitary confinement.  With only concrete walls and cockroaches to keep him company, Mohammed felt miserable, alone, despondent.  But then one day, eight months into his sentence, he heard a whisper, a whisper that would open up a portal to - of all places and times - 19th century Russia, and that would teach him how to live and love again. 
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.