We have more than enough calories, but what about other nutrients?

September 14, 2018

The United Nation's second Sustainable Development Goal targets the end of malnutrition in all forms by 2030. But new research shows that to meet this target, we need a different approach to assessing the nutrient sufficiency of the global food system. Published in Frontiers in Sustainable Food Systems, this is the first study to quantitatively map the flow of energy, protein, fat, essential amino acids and micronutrients from 'field-to-fork' at a global level and identify hotspots where nutrients are lost. The study shows that while we produce far more nutrients than is required for the global population, inefficiencies in the supply chain leave many people nutrient deficient. The research highlights the complexities that arise in delivering a balanced food system, which can only be handled by a holistic approach.

"There are two main issues with how we currently talk about food systems," says Hannah Ritchie from the University of Edinburgh, who led the study. "The first is that we focus our measure of food security in terms of calories (energy), when micronutrient malnutrition ('hidden hunger') affects more than ~2 billion people across the world."

"The second issue," she continues, "is that aspects of our food system are reported in tonnes or kilograms, and it's very hard to put these numbers in the context of how many people this could feed.

"We wanted, for the first time, to assess the full food system in useful metrics -- average nutrients per person -- across all the nutrients that are essential to good health."

The research team used food balance and nutrient composition datasheets from the UN Food and Agriculture Organization (FAO) to quantify digestible protein, fat, calories, amino acids and micronutrients (calcium, zinc, iron, folate and vitamins A, B6, B12 and C) across the supply chain -- from crop production to food delivered to households. Food and nutrient losses were calculated from FAO regional waste data, and all metrics were normalized to average per person per day (pppd). Nutrient supply values were compared to average nutritional requirements to assess whether these would be sufficient by the time food arrives at the household level.

The researchers were surprised to find that all nutrients, not just calories, exceed average requirements.

"Previous studies have shown that we produce much more than we need in terms of calories (5,500-6,000 kilocalories pppd), but I was not expecting this for protein and essential micronutrients. Some nutrients were up to five times the average requirement," explains Ritchie.

But while all nutrients exceed requirements, food wastage and nutrient losses in the supply chain mean that by the time some nutrients (e.g. calcium and folate) reach households, they barely scrape by.

"This would be okay in a perfectly equitable food system," explains Ritchie. "But with large inequalities in food availability, we know that many people will be deficient in several essential nutrients".

To further complicate the picture, not all stages of loss are the same for every nutrient. For example, the largest losses of many micronutrients (vitamin A, vitamin C, folate and calcium) occur in post-harvest waste of fruits and vegetables, while the largest losses of energy and protein occur in allocation of crops to animal feed and biofuel.

"This is important information to understand," says Ritchie. "Knowing that the highest-impact interventions for maintaining micronutrients may not be the same as for calories, which may not be the same as for protein, will help to focus our efforts for food security and nutrition."

Complicated trade-offs also arise in the production of meat and dairy.

"When you consider that more than ~80% of farmland is used for grazing or animal feed production, livestock are clearly an inefficient way of producing food," explains Ritchie. "But, while livestock are an inefficient converter of feed, they remain the only natural dietary source of vitamin B12 and an important source of high-quality protein and lysine (an amino acid) for many people," she continues.

Overall, the researchers produced a high-level framework that can inform policy decisions on global food security, and show where to target efforts for improved sufficiency and possible trade-offs that may arise. This framework is limited by the resolution of data used, which doesn't capture regional or local dynamics, but the researchers advocate its usefulness.

"This study is just the start," says Professor David Reay, a supporting researcher from the University of Edinburgh. "In the future, this replicable framework can be used to map food pathways for specific regions and countries. Our hope is that governments and development agencies can use it to assess food security risks and develop locally specific solutions."

The researchers' work emphasises the complexity of ensuring a balanced food system and the necessity of a holistic approach to meeting future food targets. "With population growth, intensifying climate change impacts and rapidly changing diets, the need for evidence-based, holistic assessments of our food system have never been more urgent," advises Professor Reay.
-end-
The research is part of a special article collection on transitioning to sustainable food and feed.

Please include a link to the original research article in your reporting: https://www.frontiersin.org/articles/10.3389/fsufs.2018.00057/full

Frontiers is an award-winning Open Science platform and leading open-access scholarly publisher. Our mission is to make high-quality, peer-reviewed research articles rapidly and freely available to everybody in the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. For more information, visit http://www.frontiersin.org and follow @Frontiersin on Twitter.

Frontiers

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.