Novel framework to address uncertainty in water management

September 14, 2018

IIASA researchers have developed a general decision-making framework to support policy decisions on the management of water resources, which, for the first time, explicitly takes into account the associated uncertainties.

Reliable access to clean water is one of the key aspects addressed by the UN Sustainable Development Goals (SDGs). In fact, most of the SDGs are in some way affected, either directly or indirectly, by growing water scarcity problems, which are likely to be further exacerbated by factors such as climate change and increased water extractions for use in, among other sectors, agriculture and industry.

In their study, the researchers analyzed the wide range of possible future conditions likely to pose significant planning challenges for water management authorities in vulnerable regions and river basins. The complexity of decisions around investments required for infrastructure and other system improvements, for instance, often carry a risk of being more harmful than helpful, and of incurring large costs due to failed investments. In addition, when the wrong decisions are made, it could ultimately lead to the degradation of valuable assets such as non-renewable groundwater resources and water-dependent ecosystems.

"Designing interventions to address water scarcity under climate change is challenging given the large uncertainties in projected water availability and demand. We identified changes in the uncertainty range of anticipated water scarcity conditions and based on this assessment, developed a general decision-making framework to support the design of policy options, which, for the first time, explicitly takes into account the associated uncertainties," says Peter Greve, IIASA Water Program researcher and lead author of the study published in Nature Sustainability.

There are many options available to decision makers when it comes to addressing water scarcity. These include investments in water storage and transfer infrastructure, desalination plants, more efficient irrigation systems, improved crop water productivities, as well as water trade and economic incentives.

"As most of these solutions require substantial expenditure, it is crucial that decisions on investments and interventions for water management at all scales are based on reliable projections of future water scarcity. The reliability of such projections are however subject to uncertainties related to the wide range of anticipated socioeconomic developments, climate change conditions, and methods that we will be faced with in the future," explains Taher Kahil, another Water Program researcher and one of the coauthors of the study.

Water-sector challenges may of course also vary considerably between countries and regions facing different levels of water scarcity under future uncertainty. While gradual improvements in water-use efficiency, for example, may be enough for areas with a minor and relatively certain increase in projected water scarcity, for areas facing severe water scarcity now and high uncertainty in the future, longer-term planning could pose a particular challenge.

Previous assessments of future water scarcity and associated adaptation and management options were wholly based on either single models or multi-model averages. The framework developed in this study, now account for the large range of uncertainty, based on a set of 45 water scarcity projections representing different socioeconomic pathways, climate change conditions, and modeling approaches. In addition, the researchers also provided guidelines at grid-scale, thereby going beyond the commonly used country- or basin-scales.

To help understand the potential policy implications of their findings and guide the planning for large-scale adaptation strategies in coming decades, the researchers defined four clusters (or challenge classes), highlighting areas with potentially similar water management challenges in each. While acknowledging that water management is constrained by local conditions and that there might be few global solutions to local water management problems, they note that policies should be designed to be robust under a wide range of socioeconomic and climate conditions, but also able to adapt to conditions that both can and cannot be anticipated. For areas that potentially require transformational change, a mere focus on robustness may not be sufficient and more fundamental transformations may be needed to address severe water scarcity problems.

The researchers point out that the purpose of this new framework is not to substitute the need for local place-specific assessments and dialogues. Rather, this study makes a critical contribution to future processes related to the planning and implementation of no-regret, transitional, and transformational investment options by governments, the private sector, and civil society actors. This makes the framework especially suitable for use by regional to national to multinational water authorities and water managers, as well as socioeconomic stakeholders and decision makers.

"We want to raise awareness that water scarcity is a real challenge, even in regions that are water-safe today. Our hope is that the new framework, which also includes no-regret and/or soft-path management options, will benefit policymakers in these regions," says Greve.

Greve P, Kahil T, Mochizuki J, Schinko T, Satoh Y, Burek P, Fischer G, Tramberend S, Burtscher R, Langan S, Wada Y (2018). Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability DOI 10.1038/s41893-018-0134-9 []


Peter Greve
IIASA Research Scholar
Water Program

Ansa Heyl
IIASA Press Office
Tel: +43 2236 807 574
Mob: +43 676 83 807 574

About IIASA:

The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, and Europe.

International Institute for Applied Systems Analysis

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to