Nav: Home

Big data studies scrutinize links between fatty liver disease and how cells make energy

September 14, 2018

Nonalcoholic fatty liver disease affects up to 40 percent of American adults. Though the condition produces no noticeable symptoms, one out of every five people with it will go on to develop a more serious condition called NASH (short for nonalcoholic steatohepatosis).

The inflammation caused by NASH can result in scarring, commonly referred to as cirrhosis, and even cancer or organ failure. With those consequences in mind, researchers are trying to learn all they can about nonalcoholic fatty liver and how it progresses to NASH.

One avenue of investigation involves mitochondria - the organelles in the cell that produce energy in the form of ATP. Researchers have known for some time that mitochondrial dysfunction has something to do with the onset and progression of nonalcoholic fatty liver. Three recent studies, described below, offer additional information on this front.

The first two studies illuminate how mitochondrial energy production stutters and fails as fatty liver disease progresses. The third describes how changes to the liver during disease progression affect the organ's use of nutrients to produce energy.

Mitochondrial proteins take a hit in a mouse model of fatty liver

Researchers at Northeast Ohio Medical University studied the lifespan of mitochondrial proteins in a mouse model of fatty liver disease. Comparing the amount of protein between healthy mice and a mouse model of nonalcoholic fatty liver disease gave them an estimate of each protein's half-life.

Their findings, published in the journal Molecular & Cellular Proteomics, show that many proteins involved in mitochondrial function, especially those directly involved in making ATP, are broken down more quickly than usual in a fatty liver. Not only does this reduce the number of proteins, but the remaining proteins are also less active.

The insult to ATP producing proteins damaged the mitochondria. In an apparent effort to get rid of dysfunctional mitochondria, cells from fatty livers showed more evidence of digesting their mitochondria, but did not increase production of new ones. As a result, the authors observed mitochondrial and ATP shortages in the cells of mice with fatty liver.

The authors proposed that because the overloaded liver cells used fatty acids instead of glucose to make energy, they may have created more reactive oxygen byproducts, which damaged proteins.

Doi: 10.1074/mcp.RA118.000961

Lipid changes in diseased liver may indicate overworked cells

Scientists know that nonalcoholic fatty livers are abnormally full of triglycerides. They need to find out more, though, about changes in other lipids.

In a study in the Journal of Lipid Research, researchers from Australia and the Netherlands report what they learned about such changes by using lipidomics to analyze liver biopsies from obese patients with normal livers, fatty ones, and full-blown NASH.

Some of the changes were predictable. For example, the researchers saw an increase in triglycerides and an increase in acylcarnitine, a molecule that shuttles fatty acids to liver mitochondria so that the organelles can make energy. This ties in to the switch to fatty acid metabolism that other teams have also observed.

The team also found significant changes over the course of disease in several lipid types without obvious connections to fatty liver. Two of those lipids have been linked to mitochondrial energy production. The researchers found that both lipids are elevated in the early stages of fatty liver and stay high as the disease progresses. The researchers think the level of both lipids may increase because mitochondria are working harder to deal with the excess energy from having lots of triglycerides around.

However, mitochondrial overwork can be risky. For example, one of the two lipids, cardiolipin, is vulnerable to a chemical reaction called peroxidation with reactive oxygen byproducts of energy production. Cardiolipin peroxidation can lead to mitochondrial dysfunction.

More detailed study will be needed to determine whether, as the authors hypothesize, mitochondrial overwork contributes to mitochondrial failure and liver disease progression.

Doi:10.1194/jlr.M085613

Liver cells opt to build lipids, not glucose, in patients with fatty liver

One of the liver's most important roles is to regulate the level of glucose in the blood, supplying energy to other tissues. When the blood supply of glucose is low, liver cells make more available by converting other molecules to glucose. When glucose is plentiful, cells in the liver convert the sugar to other types of molecules or break it down and store the energy as ATP.

In an open-access paper in the September issue of the Journal of Lipid Research, scientists at the University of Texas Southwestern Medical Center studied liver cell metabolism in obese individuals with either normal or fatty livers.

When a person who has been fasting drinks a dose of glycerol in water, their liver cells have a choice to make about the resource. Do they convert the molecule into a quick hit of glucose for energy; use it for longer-term energy storage as a fat molecule; or build nucleotides and amino acids? By analyzing patients' plasma over time after they drank labeled glycerol, the researchers could track how cells used the labeled molecules.

Patients with fatty liver tended to use the glycerol to generate fat molecules more quickly than patients with normal livers and were slower to use it for making new glucose. There was no difference between the groups in a metabolic pathway that contributes to building other types of molecules. Whether these changes in using an incoming energy source affect the progression of fatty liver disease remains to be seen.

doi: 10.1194/jlr.M086405
-end-
About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 11,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in government laboratories, at nonprofit research institutions and in industry. The Society publishes three journals: the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics. For more information about ASBMB, visit http://www.asbmb.org.

The Journal of Lipid Research (JLR) is the most-cited journal devoted to lipids in the world. For over 50 years, it has focused on the science of lipids in health and disease. The JLR aims to be on the forefront of the emerging areas of genomics, proteomics, and lipidomics as they relate to lipid metabolism and function. For more information about JLR, visit http://www.jlr.org.

Molecular & Cellular Proteomics (MCP) showcases research into proteomes, large-scale sets of proteins from different organisms or biological contexts. The journal publishes work that describes the structural and functional properties of proteins and their expression, particularly with respect to developmental time courses. Emphasis is placed on determining how the presence or absence of proteins affect biological responses, and how the interaction of proteins with their cellular partners influences their functions. For more information about MCP, visit http://www.mcponline.org.

American Society for Biochemistry and Molecular Biology

Related Mitochondria Articles:

Mitochondria-targeted antioxidant SkQ1 helps to treat diabetic wounds
Members of the Faculty of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University, have tested on a mouse model a mitochondria-targeted antioxidant, helping to treat diabetic wounds.
Mitochondria targeting anti-tumor compound
Researchers from Kumamoto University in Japan have found that the compound folic acid-conjugated methyl-BETA-cyclodextrin (FA-M-BETA-CyD) has significant antitumor effects on folate receptor-ALPHA-expressing (FR-ALPHA (+)) cancer cells.
Closing the gate to mitochondria
A team of researchers develops a new method that enables the identification of proteins imported into mitochondria.
Elucidated connection between renal failure and 'bad' mitochondria described
Biologists from the A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University suggested the approach to prevent kidney injury after ischemia.
How exercise -- interval training in particular -- helps your mitochondria stave off old age
Researchers have long suspected that the benefits of exercise extend down to the cellular level, but know relatively little about which exercises help cells rebuild key organelles that deteriorate with aging.
Cell disposal faults could contribute to Parkinson's, study finds
A fault with the natural waste disposal system that helps to keep our brain cell 'batteries' healthy may contribute to neurodegenerative disease, a new study has found.
Sex cells evolved to pass on quality mitochondria
Mammals immortalize their genes through eggs and sperm to ensure future generations inherit good quality mitochondria to power the body's cells, according to new UCL research.
Newly identified pathway in mitochondria fuels tumor progression across cancer types
Scientists at The Wistar Institute have identified a novel protein pathway across several types of cancer that controls how tumor cells acquire the energy necessary for movement, invasion and metastasis.
Collapse of mitochondria-associated membrane in ALS
Mitochondria-associated membrane (MAM) is a contacting site of endoplasmic reticulum and mitochondria, and plays a key role in cellular homeostasis.
New research on the muscles of elite athletes: When quality is better than quantity
A Danish-Swedish research team working on a project led by University of Southern Denmark has discovered that muscle endurance is not only determined by the number of mitochondria, but also their structure.

Related Mitochondria Reading:

Mitochondria and the Future of Medicine: The Key to Understanding Disease, Chronic Illness, Aging, and Life Itself
by Lee Know (Author)

Mitochondria (Cold Spring Harbor Perspectives in Biology)
by Douglas C. Wallace (Author), Richard J. Youle (Author)

Mitochondria
by Immo E. Scheffler (Author)

Diagnosis and Treatment of Chronic Fatigue Syndrome and Myalgic Encephalitis: It's Mitochondria, Not Hypochondria
by Dr. Sarah Myhill (Author)

Genius Foods: Become Smarter, Happier, and More Productive While Protecting Your Brain for Life
by Max Lugavere (Author), Paul Grewal M.D. (Author)

Mitochondria in Health and Disease: Personalized Nutrition for Healthcare Practitioners (Personalized Nutrition and Lifestyle Medicine for Healthcare Practitioners)
by Ray Griffiths (Author), Lorraine Nicolle (Series Editor), Lorraine Nicolle (Series Editor)

Mitochondria: Practical Protocols (Methods in Molecular Biology)
by Dejana Mokranjac (Editor), Fabiana Perocchi (Editor)

Minding My Mitochondria 2nd Edition: How I overcame secondary progressive multiple sclerosis (MS) and got out of my wheelchair.
by Terry L. Wahls (Author), Tom Nelson (Illustrator)

Mighty Mito: Power Up Your Mitochondria for Boundless Energy, Laser Sharp Mental Focus and a Powerful Vibrant Body
by Wellness For Life Press

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#492 Flint Water Crisis
This week we dig into the Flint water crisis: what happened, how it got so bad, what turned the tide, what's still left to do, and the mix of science, politics, and activism that are still needed to finish pulling Flint out of the crisis. We spend the hour with Dr Mona Hanna-Attisha, a physician, scientist, activist, the founder and director of the Pediatric Public Health Initiative, and author of the book "What the Eyes Don't See: A Story of Crisis, Resistance, and Hope in an American City".