Nav: Home

NASA-funded ELFIN to study how electrons get lost

September 14, 2018

Three hundred and ten miles above our planet's surface, near-Earth space is abuzz with action. Here begin the Van Allen Belts, a pair of concentric rings of fast-moving particles and intense radiation that extends more than 30,000 miles farther into space. For the most part these particles are confined to this special region, spiraling along Earth's magnetic field lines. But sometimes they come too close and crash into our atmosphere -- creating the eye-catching diffuse red aurora, but also potentially interfering with critical communications and GPS satellites that we depend on every day.

A new CubeSat mission called The Electron Losses and Fields Investigation, or ELFIN, will study one of the processes that allows energetic electrons to escape the Van Allen Belts and fall into Earth. ELFIN is set to launch from the Vandenburg Air Force Base in California on Sept. 15, 2018.

When magnetic storms form in near-Earth space, they create waves that jiggle Earth's magnetic field lines, kicking electrons out of the Van Allen Belts and down into our atmosphere. ELFIN aims to be the first to simultaneously observe this electron precipitation while also verifying the causal mechanism, measuring the magnetic waves and the resulting "lost" electrons.

Funded by NASA, The National Science Foundation, and industry partners, ELFIN is a CubeSat mission. CubeSats are small and lightweight satellites, measured in standardized 10-by-10-by-10 cubic centimeter units, that are comparatively quick to develop and come with a price tag at a fraction of larger satellite missions. ELFIN uses two identical 3U, or 3 cubic unit, CubeSats -- both about the size of a loaf of bread. By using two satellites instead of one, ELFIN will be able to measure how the precipitated electrons vary across space and time. Designed, built and tested by a team of 250 UCLA students over five years, ELFIN will be the first satellite developed, managed and operated entirely by UCLA. A key advantage of CubeSats is that they allow an inexpensive means to engage students in all phases of satellite development, operation and exploitation through real-world, hands-on research and development experience.

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA. These miniature satellites provide a low-cost platform for NASA missions, including planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

On launch day, ELFIN will hitch a ride as a secondary payload on a Delta II rocket with NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2 mission. ICESat-2 will measure the thickness of ice sheets, glaciers, sea ice and more to document how Earth's cryosphere -- the frozen water part of the Earth system -- is changing over time.
-end-


NASA/Goddard Space Flight Center

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Pushing Electrons
by Daniel P. Weeks (Author)

The Electron
by Dennis Morris (Author)

Electrons, The Building Blocks of the Universe and the Elemental Kingdom
by Ascended Master Teaching Foundation

Pushing Electrons: A Guide for Students of Organic Chemistry
by Daniel P. Weeks (Author)

Transmission Electron Microscopy: A Textbook for Materials Science (4 Vol set)
by David B. Williams (Author), C. Barry Carter (Author)

Scanning Electron Microscopy and X-Ray Microanalysis
by Joseph I. Goldstein (Author), Dale E. Newbury (Author), Joseph R. Michael (Author), Nicholas W.M. Ritchie (Author), John Henry J. Scott (Author), David C. Joy (Author)

Foundations of Electronics: Electron Flow Version, 5th Edition
by Russell Meade (Author)

Scanning Electron Microscopy and X-Ray Microanalysis: Third Edition
by Joseph Goldstein (Author), Dale E. Newbury (Author), David C. Joy (Author), Charles E. Lyman (Author), Patrick Echlin (Author), Eric Lifshin (Author), Linda Sawyer (Author), J.R. Michael (Author)

There Are No Electrons: Electronics for Earthlings
by Kenn Amdahl (Author)

Quantum Mechanics: Two Electron Systems: (a simple, yet complete approach)
by Valentin Bogatu

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#492 Flint Water Crisis
This week we dig into the Flint water crisis: what happened, how it got so bad, what turned the tide, what's still left to do, and the mix of science, politics, and activism that are still needed to finish pulling Flint out of the crisis. We spend the hour with Dr Mona Hanna-Attisha, a physician, scientist, activist, the founder and director of the Pediatric Public Health Initiative, and author of the book "What the Eyes Don't See: A Story of Crisis, Resistance, and Hope in an American City".