Nav: Home

Graphene helps protect photocathodes for physics experiments

September 14, 2018

Transforming light into electricity is no mean feat. Some devices, like solar cells, use a closed circuit to generate an electric current from incoming light. But another class of materials, called photocathodes, generate large quantities of free electrons that can be used for state-of-the-art science.

Photocathodes have one significant limitation, which is that they degrade when exposed to air. To prevent this, scientists at the U.S. Department of Energy's (DOE) Argonne, Brookhaven, and Los Alamos national laboratories have developed a way to wrap photocathodes up in a protective coat of atomically thin graphene, extending their lifetimes.

"The thin layer [of graphene] we use provides insulation from air without hampering charge mobility or quantum efficiency." -- Junqi Xie, Argonne physicist

Photocathodes work by converting photons of light into electrons through a process known as the photoelectric effect -- which essentially involves the ejection of electrons from the surface of a material hit with light of a sufficient frequency. The large quantities of electrons generated by photocathodes can be used in accelerator systems that produce intense electron beams, or in photodetector systems for high-energy physics experiments that operate in low-light environments in which every photon counts.

The relative success of a photocathode material hinges on two distinct qualities: its quantum efficiency and its longevity. "Quantum efficiency refers to the ratio of emitted electrons to incoming photons," said Argonne physicist Junqi Xie.

The higher the quantum efficiency of a given material, the more electrons it can generate.

In the study, Xie and his colleagues looked at a material called potassium cesium antimonide, which has one of the highest quantum efficiencies of any known photocathode in the visible range of the spectrum. But even though the quantum efficiency of the material is high, potassium cesium antimonide photocathodes are susceptible to breaking down when exposed to even very small amounts of air.

According to Xie, there are two ways of making sure the photocathode doesn't interact with air. The first is to operate it in a vacuum, which isn't always feasible. The second is to encapsulate the photocathode with a thin film of material.

To successfully insulate a photocathode, the researchers needed to identify a material that could form layers only a few atoms thick and that was electrically conductive. Graphene, a two-dimensional material made of carbon, satisfied both of these requirements.

"For graphene, you can just use two or three atomic layers; plus, it's optically transparent and has high charge mobility," Xie said. "The thin layer we use provides insulation from air without hampering charge mobility or quantum efficiency."

Proving that a photocathode material can last longer without suffering from quantum efficiency losses represents the key challenge in developing the next generation of these materials, Xie said. "The photocathode itself is pretty good -- it's a state-of-the-art photocathode with high quantum efficiency. Using graphene helps alleviate concern about the lifetime," he explained.

The graphene-wrapping technique used in this study could in principle be employed in any photocathode whose performance suffers when exposed to air. It is especially important for a proposed new generation of photocathodes based on a class of materials called halide perovskites. These materials could offer even higher quantum efficiencies than potassium cesium antimonide, but face similar challenges when it comes to lifetime.
An article based on the study, "Free-standing bialkali photocathodes using atomically thin substrates," appeared in the July 6 online edition of Advanced Materials Interfaces.

The work done at Argonne was supported by DOE's Office of Science.

rgonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...