New treatments for deadly lung disease could be revealed by 3D modeling

September 14, 2020

A 3D bioengineered model of lung tissue built by University of Michigan researchers is poking holes in decades worth of flat, Petri dish observations into how the deadly disease pulmonary fibrosis progresses.

The causes of pulmonary fibrosis are not fully understood, but the condition is marked by scar tissue that forms inside the lungs. That scar tissue stiffens the walls of the lungs' air sacs, called alveoli, or, at advanced stages, can completely fill the alveolar spaces. Both scenarios make breathing difficult and decrease the amount of oxygen entering the bloodstream. Often the condition is irreversible, eventually causing lung failure and death.

Some clinicians are concerned that critically ill COVID-19 patients may develop a form of pulmonary fibrosis after a long stay in the ICU.

Researchers are searching for better treatments. While they've managed to find some drugs that relieve symptoms or slow the progression in practice, they haven't been able to reliably replicate those results in today's 2D lab models. So they don't understand how or why those drugs are working, and they can't always predict which compounds will make a difference. The new research from U-M takes a step in that direction, and it starkly demonstrates how prior approaches have been ineffective.

The team showed that in some 2D models, drugs that are already known to be effective in treatment do not produce test results that show efficacy. Their 3D tissue engineered model of fibrotic lung tissue, however, shows that those drugs work.

Before their tests on drugs, they first performed studies to understand how tissue stiffness drives the appearance of myofibroblasts--cells that correlate with the progression of scarring.

"Even in cells from the same patient, we saw different outcomes," said Daniel Matera, a doctoral candidate and research team member. "When we introduced stiffness into the 2D testing environment, it activated myofibroblasts, essentially creating scar tissue. When we introduced that same kind of stiffness into our 3D testing environment, it prevented or slowed the activation of myofibroblasts, stopping or slowing the creation of scar tissue."

With the majority of pulmonary fibrosis research relying on 2D testing, he said, many have believed the high lung stiffness in patients is what should be targeted by treatments. U-M's research indicates that targeting stiffness alone may not hinder disease progression in patients, even if it works in a Petri dish.

To find effective treatments, researchers first screen libraries of pharmaceutical compounds. Today, they typically do that on cells cultured on flat plastic or hydrogel surfaces, but these settings often do a poor job of recreating what happens in the human body.

Brendon Baker, assistant professor in the U-M Department of Biomedical Engineering, and his team took a tissue engineering approach. They reconstructed 3D lung interstitium, or connective tissue, the home of fibroblasts and location where fibrosis begins. Their goal was to understand how mechanical cues from lung tissue affect fibroblast behavior and disease progression.

"Recreating the 3D fibrous structure of the lung interstitium allowed us to confirm effective drugs that wouldn't be identified as hits in traditional screening settings," Baker said.

At the center of the pulmonary fibrosis mystery is the fibroblast, a cell found in the lung interstitium that is crucial to healing but, paradoxically, can also drive disease progression. When activated, after an injury or when disease is present, they become myofibroblasts. Regulated properly, they play an important role in wound healing, but when misregulated, they can drive chronic disease. In the case of pulmonary fibrosis, they cause the stiffening of lung tissue that hampers breathing.

"Our lung tissue model looks and behaves similarly to what we have observed when imaging real lung tissue," Baker said. "Patient cells within our model can actively stiffen, degrade or remodel their own environment just like they do in disease."
-end-
Photo/video: https://drive.google.com/drive/u/1/folders/1ylartQF6kgZe4BA-kNJMIFVxW-2cNP7Z

The study, published in the current issue of Science Advances, is funded, in part, by the National Institutes of Health.

Study: Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation

The Engineered Microenvironments and Mechanobiology Lab

University of Michigan

Related Pulmonary Fibrosis Articles from Brightsurf:

The CNIO pave the way for a future gene therapy to reverse pulmonary fibrosis associated with ageing
''Our results indicate that a new therapy may be developed to prevent the development of pulmonary fibrosis associated with ageing,'' says CNIO's Maria Blasco, principal investigator of the study * Lung tissue of patients with pulmonary fibrosis does not regenerate because the cells involved in lung generation have damaged telomeres, the ends of the chromosomes.

Pulmonary fibrosis treatment shows proof of principle
A pre-clinical study led by scientists at Cincinnati Children's demonstrates that in mice the drug barasertib reverses the activation of fibroblasts that cause dangerous scar tissue to build up in the lungs of people with idiopathic pulmonary fibrosis (IPF).

Pulmonary embolism and COVID-19
Researchers at Henry Ford Health System in Detroit say early diagnosis of a life-threatening blood clot in the lungs led to swifter treatment intervention in COVID-19 patients.

Stem cells from placental amniotic membrane slow lung scarring in pulmonary fibrosis
In a study released today in STEM CELLS Translational Medicine (SCTM), researchers show for the first time how stem cells collected from human amniotic membrane can slow the progression of scarring in pulmonary fibrosis.

Researchers identify key mechanisms involved in pulmonary fibrosis development
Working alongside research groups from Heidelberg, researchers from Charité - Universitätsmedizin Berlin have elucidated the novel disease processes involved in the development of pulmonary fibrosis.

Bacterial protein fragment kills lung cells in pulmonary fibrosis, study finds
A bacterial protein fragment instigates lung tissue death in pulmonary fibrosis, a mysterious disease affecting millions of people worldwide, according to a new study from researchers at the University of Illinois at Urbana-Champaign and Mie University in Japan.

Closing in on liver fibrosis: Detailing the fibrosis process at unprecedented resolution
Today, there is no effective way to treat liver fibrosis.

Inhalation therapy shows promise against pulmonary fibrosis in mice, rats
A new study shows that lung stem cell secretions -- specifically exosomes and secretomes -- delivered via nebulizer, can help repair lung injuries due to multiple types of pulmonary fibrosis in mice and rats.

Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.

Short or long sleep associated with Pulmonary Fibrosis
Scientists have discovered that people who regularly sleep for more than 11 hours or less than 4 hours are 2-3 times more likely to have the incurable disease, pulmonary fibrosis, compared to those that sleep for 7 hours in a day.

Read More: Pulmonary Fibrosis News and Pulmonary Fibrosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.