Nav: Home

Animals' magnetic 'sixth' sense may come from bacteria, new paper suggests

September 14, 2020

ORLANDO, Sept. 14, 2020 - A University of Central Florida researcher is co-author of a new paper that may help answer why some animals have a magnetic "sixth" sense, such as sea turtles' ability to return to the beach where they were born.

The question is one that has been unresolved despite 50 years of research.

"The search for a mechanism has been proposed as one of the last major frontiers in sensory biology and described as if we are 'searching for a needle in a hay stack,'" says Robert Fitak, an assistant professor in UCF's Department of Biology, part of UCF's College of Sciences.

Fitak and researchers in the United Kingdom and Israel recently authored an article in Philosophical Transactions of the Royal Society B that proposes a hypothesis that the magnetic sense comes from a symbiotic relationship with magnetotactic bacteria.

Magnetotactic bacteria are a special type of bacteria whose movement is influenced by magnetic fields, including the Earth's.

Animals that sense Earth's magnetic field include sea turtles, birds, fish and lobsters. Sea turtles, for example, can use the ability for navigation to return to the beach where they were born.

Learning how organisms interact with magnetic fields can improve humans' understanding of how to use Earth's magnetic fields for their own navigation purposes. It can also inform ecological research into the effects of human modifications of the magnetic environment, such as constructing power lines, on biodiversity. Research into the interaction of animals with magnetic fields can also aid the development of therapies that use magnetism for drug delivery.

In the article, the researchers review the arguments for and against the hypothesis, present evidence published in support that has arisen in the past few years, as well as offer new supportive evidence of their own.

Their new evidence comes from Fitak, who mined one of the largest genetic databases of microbes, known as the Metagenomic Rapid Annotations using Subsystems Technology database, for the presence of magnetotactic bacteria that had been found in animal samples.

Previous microbial diversity studies have often focused on large patterns of the presence or absence of bacteria phyla in animals rather than specific species, Fitak says.

"The presence of these magnetotactic bacteria had been largely overlooked, or 'lost in the mud' amongst the massive scale of these datasets," he says.

Fitak found, for the first time, that magnetotactic bacteria are associated with many animals, including a penguin species, loggerhead sea turtles, bats and Atlantic right whales.

For instance, Candidatus Magnetobacterium bavaricum regularly occurred in penguins and loggerhead sea turtles, while Magnetospirillum and Magnetococcus regularly occurred in the mammal species brown bats and Atlantic right whales.

Fitak says researchers still don't know where in the animal that the magnetotactic bacteria would live, but it could be that they would be associated with nervous tissue, like the eye or brain.

"I'm working with the co-authors and local UCF researchers to develop a genetic test for these bacteria, and we plan to subsequently screen various animals and specific tissues, such as in sea turtles, fish, spiny lobsters and birds," Fitak says.

Before joining UCF in 2019, Fitak worked for more than four years as a postdoctoral researcher at Duke University performing experiments to identify genes related to a magnetic sense in fish and lobsters using modern genomic techniques.

He says the hypothesis that animals use magnetic bacteria in a symbiotic way to gain a magnetic sense warrants further exploration but still needs more evidence before anything conclusive can be stated.
-end-
Fitak received his doctorate in genetics from the University of Arizona and his bachelor's in molecular genetics from The Ohio State University. He is a member of UCF's Genomics and Bioinformatics Cluster.

Study co-authors included Eviatar Natan with The Aleph Lab, Ltd., in Oxford, England; and Yuval Werber and Yoni Vortman with Tel-Hai Academic College in Tel Hai, Israel.

CONTACT: Robert H. Wells, Office of Research, robert.wells@ucf.edu

University of Central Florida

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.