New fruitfly model of diabetes has future implications for pancreatic cell transplantation

September 15, 2004

(Philadelphia, PA) - A newly completed picture of how fruitflies control their blood sugar will inform researchers and clinicians about the basics of metabolism and how it relates to disease. Eric Rulifson, PhD, Assistant Professor of Cell and Developmental Biology at the University of Pennsylvania School of Medicine, and his colleague Seung Kim, PhD, from Stanford University, discovered an interconnected network of cells that tell the fly to take up or release sugar, as needed.

Two years ago Rulifson and Kim showed that a group of cells in the brain of the fly make insulin, which parallels the role of beta cells in humans. Now, in the September 16 issue of Nature, the researchers describe cells that produce a glucagon-like hormone, which are akin to alpha cells in mammals. These two cell types within the pancreatic islets are the main cellular sensors of blood-sugar levels. Together the fly's insulin- and glucagon-producing cells could be seen to represent a primitive pancreatic islet.

After eating food, insulin notifies muscles, fat cells, and the liver to take up excess sugar in the blood and store it as glycogen. Conversely, when the sugar level in blood dips between snacks, glucagon notifies the muscles and liver to break down stored energy like glycogen and fat to release as glucose. However, when this finely tuned system goes wrong, all-too-familiar diseases arise: diabetes when there is too much sugar; hypoglycemia when there is too little.

Because of the unexpected similarities between the insect and human pancreas, Rulifson explains that now the fly can serve as a simple model of how sugar is regulated at a very basic level. "At this point investigators would like to understand how this ancient mechanism for cells that sense the nutrient and energy status of an animal can adjust an animal's growth and metabolic state," he says. "Now we have a model for that."

Coaxing stem cells to become pancreatic islet cells for transplantation is potentially a permanent treatment for diabetes. As a developmental biologist, Rulifson is now concentrating on how the primitive pancreatic cells in the fly develop within an embryo. He and colleagues are sorting out the intricacies of what genes program the ultimate development of these mature cells from their progenitor cells. A better understanding of this process will help guide screening the human genome for genes that have a similar function in how alpha and beta cells develop.

"This will be useful information for researchers trying to program undifferentiated embryonic stem cells from other tissues to grow islet cells for cell-replacement therapies," explains Rulifson. "We're trying to identify a molecular roadmap for a normally developing beta cell, which might guide a stem cell to acquire the fate for making insulin. We hope that this Drosophila model will bring useful insights to the table."
-end-
This research was funded by the Juvenile Diabetes Research Foundation, the Pew Charitable Trusts, and the Verto Institute. This release can also be found at: www.uphs.upenn.edu/news

PENN Medicine is a $2.7 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System (created in 1993 as the nation's first integrated academic health system).

Penn's School of Medicine is ranked #3 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report's most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three owned hospitals [Hospital of the University of Pennsylvania, which is consistently ranked one of the nation's few "Honor Roll" hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation's first hospital; and Presbyterian Medical Center]; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

University of Pennsylvania School of Medicine

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.