Rensselaer researchers awarded NSF grant to study nano springs, rods, beams

September 15, 2005

Troy, N.Y. -Researchers at Rensselaer Polytechnic Institute are exploring the potential of nanomechanical systems by making and testing springs, rods, and beams on the nanoscale. They have been awarded a $1.15 million grant from the National Science Foundation for the research.

The past decade has seen an explosion of interest in electronic devices at the molecular level, but less attention has been paid to nanoscale mechanical systems, according to Toh-Ming Lu, the R.P. Baker Distinguished Professor of Physics at Rensselaer and principal investigator for the project. "Nanomechanical devices may have as important an impact as nanoelectronics, but a number of challenges need to be overcome before these systems can be practically realized," he says. "This represents a multi-billion-dollar high-technology industry that will save energy and improve the quality of lives."

Lu envisions a wide range of applications for these devices, including much more efficient light emitters and solar cells, extremely sensitive chemical and biological sensors, and super-high-density three-dimensional magnetic memory.

To achieve these advances, researchers need a better understanding of not only the growth and control of nanoscale structures, but also the way they respond to external forces such as heat, electric and magnetic fields, and mechanical stress, according to Lu. He has brought together a team of physicists, materials scientists, and mechanical engineers to address all of these issues.

"This is one more example of the wide array of interdisciplinary research being conducted at Rensselaer," says Omkaram "Om" Nalamasu, vice president for research at Rensselaer. "Collaborative work like this will help our society solve its most pressing problems in fields as diverse as energy security and information technology."

The $1.15 million, four-year grant is part of a National Science Foundation program to develop Nanoscale Interdisciplinary Research Teams (NIRT) to catalyze synergistic research and education in emerging areas of nanoscale science and technology.
Nanotechnology at Rensselaer
In September 2001, the National Science Foundation selected Rensselaer as one of the six original sites nationwide for a new Nanoscale Science and Engineering Center (NSEC). As part of the U.S. National Nanotechnology Initiative, the program is housed within the Rensselaer Nanotechnology Center and forms a partnership between Rensselaer, the University of Illinois at Urbana-Champaign, and Los Alamos National Laboratory. The mission of Rensselaer's Center for Directed Assembly of Nanostructures is to integrate research, education, and technology dissemination, and to serve as a national resource for fundamental knowledge and applications in directed assembly of nanostructures. The five other original NSECs are located at Harvard University, Columbia University, Cornell University, Northwestern University, and Rice University.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Rensselaer Polytechnic Institute

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to