Nav: Home

A small, inexpensive high frequency comb signal generator

September 15, 2015

WASHINGTON, D.C., September 15, 2015 - The manipulation of electromagnetic radiation is an essential function of today's technology. Low frequency radiation -- in the kilohertz and megahertz range -- is easier to generate than gigahertz radiation. Yet higher frequencies can carry more information and travel farther.

Now researchers from the Italian National Research Council (SPIN-CNR) and the National Enterprise for nanoScience and nanoTechnology (NEST-CNR) in Italy have devised a novel, inexpensive way to turn low frequency signals into higher frequencies. The approach makes use of a Nobel Prize-winning device called a Josephson junction, which is currently used to make extremely sensitive voltmeters and detect minute changes in magnetic fields. The researchers describe their new application in the Journal of Applied Physics, from AIP Publishing.

Josephson junctions consist of a thin layer of insulator sandwiched between two superconducting layers. Under the right conditions, electrons can travel from one superconducting layer to the other with no resistance through the insulator in the middle. When the current reaches a critical level, however, a finite resistance suddenly appears and a voltage develops across the device.

Paolo Solinas, a physicist at the Italian National Research Council, was experimenting on Josephson junctions with his colleagues at NEST-CNR when they noticed an unusual behavior. They found that Josephson junctions placed in an oscillating magnetic field produced voltage pulses. The researchers turned to theory to analyze and explain the behavior.

They found that an oscillating magnetic field produced a sudden jump in a quantum mechanical property of the superconductor layers called a phase. The phase jump in turn produced the voltage pulse. The researchers also found that a regularly time-dependent magnetic field would produce voltage pulses that contained hundreds of harmonics of the original driving frequency, including frequencies thousands of times higher.

"The output of a single device is small, but you could build an array of devices to turn low power intrinsic of a single junction into higher output power," Solinas said. The team calculated that stringing together 1,000 Josephson junctions made from niobium and aluminum oxide could convert a 100 MHz input frequency into a 100 picowatt signal at 50 GHz.

The researchers also found that changing the shape of the Josephson junction changed the amount of power at different output frequencies. They found that a ring-shaped junction produced more power at higher harmonics than did a circular or rectangular junction.

A frequency converter made from Josephson junctions would be a totally different type of signal generator from what's currently used, Solinas noted. Most gigahertz signal generators are bulky and expensive. Electronic circuits made from Josephson junctions could be mere millimeters long and integrate easily into electronic chips.

"So far we have theoretical results, but we are really looking forward to having a match with experiment," Solinas said. The team hopes their initial finding will interest others in building the devices. At first the technology would likely be used in the lab to calibrate measurements and perform experiments, Solinas said. With further development, it might also be used by the telecommunications industry.
-end-
The article, "Radiation comb generation with extended Josephson junctions," is authored by P. Solinas, R. Bosisio and F. Giazotto. It will be published in the Journal of Applied Physics on September 15, 2015 (DOI: 10.1063/1.4928679). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jap/118/11/10.1063/1.4928679

The authors of this paper are affiliated with the Italian National Research Council (SPIN-CNR) and the National Enterprise for nanoScience and nanoTechnology (NEST-CNR) in Italy.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

American Institute of Physics

Related Magnetic Fields Articles:

Are gamma-ray bursts powered by a star's collapsing magnetic fields?
In its final moments of life, a distant massive star releases an intense burst of high-energy gamma radiation - a Gamma Ray Burst (GRB) - the brightest sources of energy in the universe, detectable to humans through powerful telescopes.
Not everything is ferromagnetic in high magnetic fields
High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field.
Ultracold gases in time-dependent magnetic fields
Zk Noor Nabi from Zhejiang University, China and co-workers from the Indian Institute of Technology studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of an ultracold gas in a time-dependent magnetic field.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.
Technique pulls interstellar magnetic fields within easy reach
A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.
A bubbly new way to detect the magnetic fields of nanometer-scale particles
The method provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.
Quantum sensing method measures minuscule magnetic fields
A new technique developed at MIT uses quantum sensors to enable precise measurements of magnetic fields in different directions.
The FASEB Journal: Magnetic fields enhance bone remodeling
Since the creation of 3D-printed (3DP) porous titanium scaffolds in 2016, the scientific community has been exploring ways to improve their ability to stimulate osteogenesis, or bone remodeling.
Tangled magnetic fields power cosmic particle accelerators
Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe.
More Magnetic Fields News and Magnetic Fields Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.