Nav: Home

A small, inexpensive high frequency comb signal generator

September 15, 2015

WASHINGTON, D.C., September 15, 2015 - The manipulation of electromagnetic radiation is an essential function of today's technology. Low frequency radiation -- in the kilohertz and megahertz range -- is easier to generate than gigahertz radiation. Yet higher frequencies can carry more information and travel farther.

Now researchers from the Italian National Research Council (SPIN-CNR) and the National Enterprise for nanoScience and nanoTechnology (NEST-CNR) in Italy have devised a novel, inexpensive way to turn low frequency signals into higher frequencies. The approach makes use of a Nobel Prize-winning device called a Josephson junction, which is currently used to make extremely sensitive voltmeters and detect minute changes in magnetic fields. The researchers describe their new application in the Journal of Applied Physics, from AIP Publishing.

Josephson junctions consist of a thin layer of insulator sandwiched between two superconducting layers. Under the right conditions, electrons can travel from one superconducting layer to the other with no resistance through the insulator in the middle. When the current reaches a critical level, however, a finite resistance suddenly appears and a voltage develops across the device.

Paolo Solinas, a physicist at the Italian National Research Council, was experimenting on Josephson junctions with his colleagues at NEST-CNR when they noticed an unusual behavior. They found that Josephson junctions placed in an oscillating magnetic field produced voltage pulses. The researchers turned to theory to analyze and explain the behavior.

They found that an oscillating magnetic field produced a sudden jump in a quantum mechanical property of the superconductor layers called a phase. The phase jump in turn produced the voltage pulse. The researchers also found that a regularly time-dependent magnetic field would produce voltage pulses that contained hundreds of harmonics of the original driving frequency, including frequencies thousands of times higher.

"The output of a single device is small, but you could build an array of devices to turn low power intrinsic of a single junction into higher output power," Solinas said. The team calculated that stringing together 1,000 Josephson junctions made from niobium and aluminum oxide could convert a 100 MHz input frequency into a 100 picowatt signal at 50 GHz.

The researchers also found that changing the shape of the Josephson junction changed the amount of power at different output frequencies. They found that a ring-shaped junction produced more power at higher harmonics than did a circular or rectangular junction.

A frequency converter made from Josephson junctions would be a totally different type of signal generator from what's currently used, Solinas noted. Most gigahertz signal generators are bulky and expensive. Electronic circuits made from Josephson junctions could be mere millimeters long and integrate easily into electronic chips.

"So far we have theoretical results, but we are really looking forward to having a match with experiment," Solinas said. The team hopes their initial finding will interest others in building the devices. At first the technology would likely be used in the lab to calibrate measurements and perform experiments, Solinas said. With further development, it might also be used by the telecommunications industry.
-end-
The article, "Radiation comb generation with extended Josephson junctions," is authored by P. Solinas, R. Bosisio and F. Giazotto. It will be published in the Journal of Applied Physics on September 15, 2015 (DOI: 10.1063/1.4928679). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jap/118/11/10.1063/1.4928679

The authors of this paper are affiliated with the Italian National Research Council (SPIN-CNR) and the National Enterprise for nanoScience and nanoTechnology (NEST-CNR) in Italy.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

American Institute of Physics

Related Magnetic Fields Articles:

New metrology technique measures electric fields
It is crucial that mobile phones and other wireless devices -- so prevalent today -- have accurate and traceable measurements for electric fields and radiated power.
First direct exploration of magnetic fields in the upper solar atmosphere
Scientists have explored the magnetic field in upper solar atmosphere by observing the polarization of ultraviolet light with the CLASP sounding rocket experiment during its 5-minute flight in space on Sept.
New method can model chemistry in extreme magnetic fields of white dwarfs
Approximately 10-20 percent of white dwarfs exhibit strong magnetic fields, which can reach up to 100,000 tesla.
Researchers control soft robots using magnetic fields
Engineering researchers have made a fundamental advance in controlling so-called soft robots, using magnetic fields to remotely manipulate microparticle chains embedded in soft robotic devices.
Steering towards grazing fields
It makes sense that a 1,200 pound Angus cow would place quite a lot of pressure on the ground on which it walks.
More Magnetic Fields News and Magnetic Fields Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...