Nav: Home

Understanding nature's most striking colors

September 15, 2015

WASHINGTON, D.C., September 15, 2015 -- The tulip called Queen of the Night has a fitting name. Its petals are a lush, deep purple that verges on black. An iridescent shimmer dances on top of the nighttime hues, almost like moonlight glittering off regal jewels.

Certain rainforest plants in Malaysian demonstrate an even more striking color feature: Their iridescent blue leaves turn green when dunked in water.

Both the tulip's rainbow sparkle and the Malaysian plants' color change are examples of structural color -- an optical effect that is produced by a physical structure, instead of a chemical pigment.

Now researchers have shown how plant cellulose can self-assemble into wrinkled surfaces that give rise to effects like iridescence and color change. Their findings provide a foundation to understand structural color in nature, as well as yield insights that could guide the design of devices like optical humidity sensors. The researchers describe their results in a paper in The Journal of Chemical Physics, from AIP Publishing

Starting with Twisting Cellulose

Cellulose is one of the most abundant organic materials on Earth. It forms a key part of the cell wall of green plants, where the cellulose fibers are found in layers. The fibers in a single layer tend to align in a single direction. However, when you move up or down a layer the axis of orientation of the fibers can shift. If you imagined an arrow pointing in the direction of the fiber alignment, it would often spin in a circle as you moved through the layers of cellulose. This twisting pattern is called a cholesteric phase, because it was first observed while studying cholesterol molecules.

Scientists think that cellulose twists mainly to provide strength. "The fibers reinforce in the direction they are oriented," said Alejandro Rey, a chemical engineer at McGill University in Montreal, Canada. "When the orientation rotates you get multi-directional stiffness."

Rey and his colleagues, however, weren't primarily interested in cellulose's mechanical properties. Instead, they wondered if the twisting structure could produce striking optical effects, as seen in plants like iridescent tulips.

The team constructed a computational model to examine the behavior of cholesteric phase cellulose. In the model, the axis of twisting runs parallel to the surface of the cellulose. The researchers found that subsurface helices naturally caused the surface to wrinkle. The tiny ridges had a height range in the nanoscale and were spaced apart on the order of microns.

The pattern of parallel ridges resembled the microscopic pattern on the petals of the Queen of the Night tulip. The ridges split white light into its many colored components and create an iridescent sheen -- a process called diffraction. The effect can also be observed when light hits the microscopic grooves in a CD.

The researchers also experimented with how the amount of water in the cellulose layers affected the optical properties. More water made the layers twist less tightly, which in turn made the ridges farther apart. How tightly the cellulose helices twist is called the pitch. The team found that a surface with spatially varying pitch (in which some areas were more hydrated than others) was less iridescent and reflected a longer primary wavelength of light than surfaces with a constant pitch. The wavelength shift from around 460 nm (visible blue light) to around 520 nm (visible green light) could explain some plants' color changing properties, Rey said.

Insights into Nature and Inspiration for New Technologies

Although proving that diffractive surfaces in nature form in the same way will require further work, the model does offer a good foundation to further explore structural color, the researchers said. They imagine the model could also guide the design of new optical devices, for example sensors that change color to indicate a change in humidity.

"The results show the optics [of cholesteric cellulose] are just as exciting as the mechanical properties," Rey said. He said scientists tend to think of the structures as biological armor, because of their reinforcing properties. "We've shown this armor can also have striking colors," he said.
-end-
The article, "Tunable Nano-wrinkling of Chiral Surfaces: Structure and Diffraction Optics" is authored by P. Rofouie, D. Pasini and A.D. Rey. It will be published in the Journal of Chemical Physics on September 15, 2015 (DOI: 10.1063/1.4929337). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jcp/143/11/10.1063/1.4929337

The authors of this paper are affiliated with McGill University.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

American Institute of Physics

Related Cellulose Articles:

Researchers develop viable, environmentally-friendly alternative to Styrofoam
Washington State University researchers have developed an environmentally-friendly, plant-based material that for the first time works better than Styrofoam for insulation.
From nata de coco to computer screens: Cellulose gets a chance to shine
Scientists at Osaka University determined the intrinsic birefringence of cellulose molecules, which have great potential to improve smartphone and computer screens.
New cellulose-based material gives three sensors in one
Cellulose soaked in a carefully designed polymer mixture acts as a sensor to measure pressure, temperature and humidity -- at the same time!
Making xylitol and cellulose nanofibers from paper paste
The ecological bio-production of xylitol and cellulose nanofibers from material produced by the paper industry has been achieved by a Japanese research team.
From foam to bone: Plant cellulose can pave the way for healthy bone implants
Researchers from the University of British Columbia and McMaster University have developed what could be the bone implant material of the future: an airy, foamlike substance from plant cellulose that can be injected into the body and provide scaffolding for the growth of new bone.
Converting biomass by applying mechanical force
German nanoscientists have succeeded in demonstrating a new reaction mechanism to cleave cellulose efficiently.
Scientists use microorganism to fabricate functional bacterial cellulose in situ
A research team led by Prof. XIAN Mo and ZHANG Haibo from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences developed a new method to use microorganism to fabricate functional bacterial cellulose in situ.
Scientists develop a cellulose biosensor material for advanced tissue engineering
I.M. Sechenov First Moscow State Medical University teamed up together with Irish colleagues to develop a new imaging approach for tissue engineering.
Hairy nanotechnology provides green anti-scaling solution
A new type of cellulose nanoparticle, invented by McGill University researchers, is at the heart of a more effective and less environmentally damaging solution to one of the biggest challenges facing water-based industries: preventing the buildup of scale.
Plant polymers do not always act together to make beautiful shapes
Researchers at the Nara Institute of Science and Technology (NAIST) show in mutant plant cells that three polymers, cellulose, hemicellulose, and lignin, are deposited at the secondary cell wall independent of each other.
More Cellulose News and Cellulose Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.