Nav: Home

Making a smart material smarter

September 15, 2015

A team of researchers, including some from Michigan State University, is making a smart material smarter.

Using a series of grants from the National Science Foundation, the team is manipulating a material known as vanadium dioxide, or VO2, making it useable in a size that is barely visible to the naked eye.

"My research team works on integrating smart materials in small devices and systems," said Nelson Sepulveda, an associate professor of electrical and computer engineering who is heading up the work. "Think about shrinking a robot and making it fit inside a human hair."

More recently, the MSU College of Engineering researchers, working with colleagues from the South Dakota School of Mines and Technology, extended the applications of VO2 by integrating the material in antennas, which makes their tuning easier.

The material experiences what's known as a solid-to-solid phase change, which means it remains a solid (instead of becoming a liquid or gas). In other words, the material is a solid at room temperature, but when you heat it up slightly, it becomes another type of solid with very different properties.

This ability to alter its shape is particularly useful in the communications field. Specifically, it can be used in radio and cell phone antennas, allowing a user to switch bands using the same antenna.

"A good example is the military," Sepulveda said. "If you're communicating on one channel and suddenly the enemy jams it, you need to switch because it's become compromised. Now that is very easy to do. We have just demonstrated that the technology works and there is much more exciting results coming soon."

Another practical use for this smarter smart material is in the field of health and medicine.

"When perfected, it could allow for very precise microsurgery, helping surgeons pinpoint tissue for selective treatment," Sepulveda said.

The advantage of VO2 is it is able to change phases very easily and in a reversible way. Often a phase change involves extreme temperature changes, and in many cases the phase change is not reversible. Additionally, the material remembers what is happening to it, that is the material has memory.

"That's the beauty of it," Sepulveda said. "It's the only smart material that has a phase change that is relatively close to room temperature."
-end-
The work was funded by a series of NSF grants totaling $860,000.

Other members of the research team include lead researcher Dimitris Anagnostou and graduate student Tarron Teeslink from the South Dakota School of Mines and Technology, and MSU graduate student David Torres.The research was detailed earlier this year in the IEEE Antennas and Wireless Propagation Letters.

Michigan State University

Related Phase Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
X-rays reveal monolayer phase in organic semiconductor
An international team of researchers has investigated how the electrical properties of dihexyl-quarterthiophene thin films depend on their structure.
Current pledges to phase out coal power are critically insufficient to slow climate change
The Powering Past Coal Alliance, or PPCA, is a coalition of 30 countries and 22 cities and states, that aims to phase out unabated coal power.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Phase transitions: The math behind the music
Physics Professor Jesse Berezovsky contends that until now, much of the thinking about math and music has been a top-down approach, applying mathematical ideas to existing musical compositions as a way of understanding already existing music.
More Phase Change News and Phase Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...