Nav: Home

Acetic acid, found in vinegar, shown to be effective against bacteria found in burn wounds

September 15, 2015

Highly diluted acetic acid, an active ingredient of household vinegar, has been shown to be an effective alternative agent to prevent infection and kill bacteria found in burn wounds.

Researchers from the University of Birmingham and the National Institute for Health Research (NIHR) Surgical Reconstruction and Microbiology Research Centre (SRMRC) investigated the antibacterial activity of acetic acid against key burn wound colonising organisms growing both planktonically and as biofilms.

Burns are a common traumatic injury and prone to becoming infected due to loss of a normal skin barrier. Local infection of the burn wound and subsequent sepsis (blood poisoning) are key concerns for patients, with sepsis the leading cause of death among patients with burn wounds.

Infections of burn wounds are difficult to treat with traditional antibiotics as they do not effectively reach the wound, and the infecting organisms are often highly antibiotic resistant.

The study, published in PLOS ONE, demonstrated that low concentrations of acetic acid can be used to treat biofilms, and therefore could be used as alternatives to topical (surface applied) antimicrobials and traditional antimicrobial dressings for preventing bacterial colonisation of burns.

The current use of acetic acid in clinical settings has been limited due to concerns of patient tolerability. The finding that it is effective at far lower concentrations than previously thought therefore offers hope for the development of novel treatments.

Miss Fenella Halstead, NIHR SRMRC Clinical Scientist at the Queen Elizabeth Hospital, explained, "As resistance to antibiotics grows, we need to find ways to replace them with alternative topical agents that can kill bacteria and help our burns patients. The evidence in this study offers great promise to be a cheap and effective measure to do just that."

29 isolates of common wound-infecting pathogens including Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp. were grown in the laboratory.

The ability of highly diluted acetic acid to inhibit growth of pathogens, prevent the formation of biofilms, and then eradicate pre-formed biofilms was tested on each isolate. Low concentrations of acetic acid (0.16-0.3%) were shown to be able to inhibit growth of all strains, prevent them from forming biofilms (bacteria attached to a surface) and also to eradicate mature biofilms for all isolates after three hours of exposure.

Previous clinical use of acetic acid as an antimicrobial treatment has used much higher concentrations of 2.5%. Miss Halstead continued, "A key way in which bacteria cause infection is in a biofilm; where instead of living as single cells they form a community in the form of a slimy layer that we see on a wound, on a valve or on a catheter, for instance."

"As much as eighty percent of infections in the body are due to these biofilms which, typically, are even more resistant to antibiotics because they essentially have safety in numbers and their metabolic rate is a lot slower. For that reason, seeing that acetic acid was effective against all types of these pathogens was really great."

The team are now designing clinical trials with acetic acid in which they will test plain dressings soaked with acetic acid, against the more commonly used silver-based dressings. A further study will test the effectiveness of two specific concentrations of acetic acid on patients at the Healing Foundation Centre for Burns Research based at the Queen Elizabeth Hospital.

Dr Mark Webber, from the University of Birmingham, added, "Acetic acid, or more commonly, vinegar, has been used sporadically in medicine for the past 6000 years - being successfully implemented to treat plague, ear, chest, and urinary tract infections. So in that sense it's a well-known antimicrobial which has seen sporadic clinical application. Our work now gives a firm evidence base to guide the development of treatments which promise to be cheap and effective"

"These new trials will hopefully provide clarity on how this can be implemented for burns patients across the world. What we can say however, is more work still needs to be done to determine the best way in which to use acetic acid or similar chemicals to treat and prevent bacterial infection. We also need to study the way in which bacteria may adapt or evolve over time to exposure to these acids to again understand how they are effective and ensure any clinical usage is designed to minimise emergence of resistance as we have seen with antibiotics."

The team stress that people should not self-apply vinegar in the case of a burn however; but should go to hospital as normal. The acetic acid treatment would only be required in serious burns where infection can become a problem.
-end-


University of Birmingham

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.