Nav: Home

Spleen may provide new target for treating stroke's debilitating chronic inflammation

September 15, 2015

Tampa, FL (Sept. 15, 2015) -- Stroke injures the brain, but a new University of South Florida (USF) study indicates an abdominal organ that plays a vital role in immune function, the spleen, may be a target for treating stroke-induced chronic inflammation leading to further brain cell death.

Neuroscientists at the USF Center of Excellence for Aging and Brain Repair found that human bone marrow stem cells intravenously administered to post-stroke rats preferentially migrated to the spleen and reduced the inflammatory-plagued secondary cell death associated with stroke progression in the brain. The study is reported in the September 2015 issue of the American Heart Association journal Stroke.

The USF study helps resolve a perplexing observation by many scientists evaluating the effects of stem cell therapies: Functional recovery occurs in experimental models of neurological disorders, including stroke, despite little or mediocre survival of transplanted stem cells within the injured brain.

"Our findings suggest that even if stem cells do not enter the brain or survive there, as long as the transplanted cells survive in the spleen the anti-inflammatory effects they promote may be sufficient enough to therapeutically benefit the stroke brain," said principal investigator Cesario Borlongan, PhD, professor and director of the USF Center of Excellence for Aging and Brain Repair.

Stroke is a leading cause of death and the number one cause of chronic disability in the United States, yet treatment options are limited. Stem cell therapy has emerged as a potential treatment for ischemic stroke, but most preclinical studies have looked at the effects of stem cells transplanted during acute stroke - one hour to 3 days after stroke onset.

Following acute stroke, an initial brain attack caused by lack of blood flow, the blood-brain barrier is breeched, allowing the infiltration of inflammatory molecules that trigger secondary brain cell death in the weeks and months that follow. This acerbated inflammation is the hallmark of chronic stroke.

The USF researchers intravenously administered human bone marrow stem cells to rats 60 days following stroke onset - the chronic stage. The transplanted stem cells were attracted predominantly to the spleen; the researchers found 30-fold more stem cells survived in this peripheral organ than in the brain. Once in the spleen, the stem cells dampened an inflammatory signal (tumor necrosis factor) activated immediately after stroke and prevented the migration from spleen to the compromised brain of harmful macrophages that stimulate inflammation.

This reduced systemic inflammation correlated with significant decreases in the size of lesions caused by acute stroke in the striatum--a portion of the brain controlling movement. There was a trend toward prevention of additional neuron loss in the portion of the brain affecting memory and thinking.

"In the chronic stage of stroke, macrophages are like fuel to the fire of inflammation," Dr. Borlongan said. "So if we can find a way to effectively block the fuel with stem cells, then we may prevent the spread of damage in the brain and ameliorate the disabling symptoms many stroke patients live with."

The USF researchers next plan to test whether transplanting human bone marrow stem cells directly into the spleen will lead to behavioral recovery in post-stroke rats.

The one drug approved for emergency treatment of stroke, the clot-busting drug tPA, must be administered less than 4.5 hours after onset of ischemic stroke, and benefits only 3 to 4 percent of patients, Dr. Borlongan said. While more study is needed, evidence from USF and other groups thus far indicates stem cells may help provide a more effective treatment for stroke over a wider timeframe.

"Stem cells are not a magic bullet, but a combination of stem cells and other anti-inflammatory agents may lead to the optimal therapeutic benefit for stroke patients," he said.

Lead study author Sandra Acosta, PhD, a postdoctoral fellow in the USF Department of Neurosurgery and Brain Repair, said targeting the spleen with stem cells or the anti-inflammatory molecules they secrete offers hope for treating chronic neurodegenerative diseases like stroke at later stages.

"We've shown (in an animal model) that it's possible to stop disease progression 60 days after the initial stroke injury, when chronic inflammation in the brain was widespread," she said. "If that can be replicated in humans, it will be powerful."
The USF study was supported by grants from the National Institute of Neurological Disorders and Stroke and the James and Esther King Biomedical Research Foundation.

Article citation:

Sandra A. Acosta; Naoki Tajira; Jaclyn Hoover; Yuji Kaneko; and Cesar Borlongan, "Intravenous Bone Marrow Stem Cell Grafts Preferentially Migrate to Spleen and Abrogate Chronic Inflammation in Stroke," Stroke, September 2015; DOI: 10.1161/STROKEAHA.115.009854.

USF Health's mission is to envision and implement the future of health. It is the partnership of the USF Health Morsani College of Medicine, the College of Nursing, the College of Public Health, the College of Pharmacy, the School of Physical Therapy and Rehabilitation Sciences, and the USF Physician's Group. The University of South Florida is a Top 50 research university in total research expenditures among both public and private institutions nationwide, according to the National Science Foundation. For more information, visit

University of South Florida (USF Health)

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...