Nav: Home

New on/off functionality for fast, sensitive, ultra-small technologies

September 15, 2020

Osaka, Japan - How do you turn on and off an ultra-small component in advanced technologies? You need an actuator, a device that transmits an input such as electricity into physical motion. However, actuators in small-scale technologies to date have critical limitations. For example, if it's difficult to integrate the actuator into semiconductor electronics, real-world applications of the technology will be limited. An actuator design that operates quickly, has precise on/off control, and is compatible with modern electronics would be immensely useful.

In a study recently published in Nano Letters, a team including researchers from Osaka University has developed such an actuator. Its sensitivity, fast on/off response, and nanometer-scale precision are unparalleled.

The researchers' actuator is based on vanadium oxide crystals. Many current technologies use a property of vanadium oxide known as the phase transition to cause out-of-plane bending motions within small-scale devices. For example, such actuators are useful in ultra-small mirrors. Using the phase transition to cause in-plane bending is far more difficult, but would be useful, for example, in ultra-small grippers in medicine.

"At 68°C, vanadium oxide undergoes a sharp monoclinic to rutile phase transition that's useful in microscale technologies," explains co-author Teruo Kanki. "We used a chevron-type (sawtooth) device geometry to amplify in-plane bending of the crystal, and open up new applications."

Using a two-step protocol, the researchers fabricated a fifteen-micrometer-long vanadium oxide crystal attached by a series of ten-micrometer arms to a fixed frame. By means of a phase transition caused by a readily attainable stimulus--a 10°C temperature change--the crystal moves 225 nanometers in-plane. The expansion behavior is highly reproducible, over thousands of cycles and several months.

"We also moved the actuator in-plane in response to a laser beam," says Nicola Manca and Luca Pelligrino, co-authors. "The on/off response time was a fraction of a millisecond near the phase transition temperature, with little change at other temperatures, which makes our actuators the most advanced in the world."

Small-scale technologies such as advanced implanted drug delivery devices wouldn't work without the ability to rapidly turn them on and off. The underlying principle of the researchers' actuator--a reversible phase transition for on/off, in-plane motion--will dramatically expand the utility of many modern technologies. The researchers expect that the accuracy and speed of their actuator will be especially useful to micro-robotics.
-end-
The article, "Planar nanoactuators based on VO2 phase transition," was published in Nano Letters at DOI: https://doi.org/10.1021/acs.nanolett.0c02638

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Vanadium Articles:

Scientists uncover secret of material for promising thermal imagers
Russian researchers have discovered what makes vanadium dioxide films conduct electricity.
Russian chemists proposed a new design of flow batteries
Redox flow batteries are promising long-term energy storage devices in smart power grids.
Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
A hemispherical vanadium oxide cluster has a cavity that can accommodate a bromine molecule.
A post-pandemic world: will populations be on the move? Study shows contagions could be catalysts for mass migration
Could the world soon be on the move again in the wake of COVID-19?
Orbital ordering triggers nucleation-growth behavior of electrons in an inorganic solid
A new study by researchers from Waseda University and the University of Tokyo found that orbital ordering in a vanadate compound exhibits a clear nucleation-growth behavior.
Co-occurring contaminants may increase NC groundwater risks
Eighty-four percent of the wells sampled in the Kings Mountain Belt and the Charlotte and Milton Belts of the Piedmont region of North Carolina contained concentrations of vanadium and hexavalent chromium that exceeded health recommendations from the North Carolina Department of Health and Human Services.
Team sheds new light on design of inorganic materials for brain-like computing
Ever wish your computer could think like you do or perhaps even understand you?
New tools show a way forward for large-scale storage of renewable energy
A technique based on the principles of MRI has allowed researchers to observe not only how next-generation batteries for large-scale energy storage work, but also how they fail, which will assist in the development of strategies to extend battery lifetimes in support of the transition to a zero-carbon future.
Closely spaced hydrogen atoms could facilitate superconductivity in ambient conditions
An international team of researchers discovered the hydrogen atoms in a common metal hydride material are much more tightly spaced than had been predicted for decades--a feature that could possibly facilitate superconductivity at or near room temperature and pressure.
Scientists make breakthrough in ion-conducting composite membranes
Chinese researchers under the direction of Professors LI Xianfeng and ZHANG Huamin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences recently developed an ultrathin ion-conducting membrane with high selectivity and conductivity that can boost the power of flow batteries.
More Vanadium News and Vanadium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.