Nav: Home

The Wnt pathway gets even more complicated

September 15, 2020

The Wnt signalling pathway has been studied for decades, still it holds surprises in store. Bon-Kyoung Koo, group leader at IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences and Tadasuke Tsukiyama at the Hokkaido University have now uncovered a new and unexpected role for a key component of the Wnt pathway, Casein Kinase-1, in regulating the pathway at the plasma membrane. This is the result of a study published today in Nature Communications, and broadens our understanding of the regulatory loops controlling the Wnt pathway, a pathway associated with stem cell maintenance, cell proliferation and cancer.

In the Wnt pathway, Casein Kinase-1 is well-known as a part of the destruction complex. In the steady-state, when no Wnt signal is present, this complex destines the downstream mediator ?-catenin for constant degradation. When a Wnt signal reaches the cell, the Wnt receptor Frizzled inhibits the destruction complex. This allows ??-catenin to enter the nucleus, where it sets downstream responses in motion.

Casein Kinase-1 responsible for phosphoswitch of RNF43

In the newly published study, Tadasuke Tsukiyama and Bon-Kyoung Koo find that Casein Kinase-1 also regulates Wnt signalling at the plasma membrane. At the plasma membrane, the ubiquitin ligase RNF43 marks the Wnt receptor Frizzled for degradation, effectively shutting off the Wnt signalling pathway. The researchers discovered that Casein Kinase-1 triggers the switch for RNF43: When Casein Kinase-1 phosphorylates RNF43, RNF43 is activated and marks Frizzled with ubiquitin for degradation. When Casein Kinase-1 does not phosphorylate RNF43, RNF43 is inactive and signalling via Frizzled can continue. "We find that Casein Kinase-1 has an essential function in activating RNF43. With our work, we are effectively reintroducing Casein Kinase-1 to the field, defining a new role for this well-known regulator", Bon-Kyoung Koo explains.

This new understanding could lead to a novel approach for reining the Wnt pathway in cancer cells. Tsukiyama and Koo found that a mutation in RNF43's extracellular domain interrupts its function in negative feedback regulation, the tumour suppressor function of RNF43. This mutation changes RNF43 into an oncogenic form that abnormally enhances Wnt signalling. The researchers found that mimicking the phosphorylation, by adding negatively charged residues to the mutant RNF43, can revert it back to a functional tumour suppressor. With this mimicked phosphoswitch, the mutant RNF43 was again able to inhibit Frizzled. "Some patients carry a mutation in RNF43's extracellular domain. We hope that, once we know how to mimic phosphorylation in cells, this phosphorylation would revive the RNF43 tumour suppressor, enabling it to again control the Wnt pathway", Bon-Kyoung Koo adds.
About IMBA

IMBA - Institute of Molecular Biotechnology - is one of the leading biomedical research institutes in Europe focusing on cutting-edge stem cell technologies, functional genomics, and RNA biology. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. The stem cell and organoid research at IMBA is being funded by the Austrian Federal Ministry of Science and the City of Vienna.

IMBA- Institute of Molecular Biotechnology of the Austrian Academy of Sciences

Related Cancer Cells Articles:

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.
Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.
Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.
Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.
Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.
New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at