Nav: Home

Stem cells engineered to evade immune system hold promise for 'off-the-shelf' grafts

September 15, 2020

Durham, NC - Human pluripotent stem cells (hPSCs) hold promise in the field of regenerative medicine for how they give rise to every other cell type in the body and for their ability to propagate indefinitely. Their potential, however, is hampered by the body's tendency to reject any "allogeneic" cells or tissue, which means that the cells come from a donor other than the patient. This rejection is due to the body's immune system labeling the cells as "foreign invaders" and setting in motion a series of strategies intended to ward off what it deems an attack -- leaving researchers scrambling for a way around this protective measure.

A paper released today in STEM CELLS details a method that might provide the answer. The authors report on how they genetically edited out a key set of proteins found on the surface of the hPSCs that are the targets of immune rejection, basically rendering them invisible to the body's immune system.

The multi-institutional research team was led by Xiaoqing Zhang, M.D., Ph.D., and Lin Ma, Ph.D., from the Tongji University School of Medicine. "What we have done is taken advantage of the non-classical human leukocyte antigen (HLA) molecules, which encode the main targets of allograft rejection, to construct hypoimmunogenic hPSCs," Dr. Zhang said. "Our strategy not only ameliorates the body's main immune-rejection weapons -- T cells (especially CD8+ Ts), natural killer (NK) cells and antigen-presenting cells -- but also attenuates cell contact-triggered cell killing and immunogenicity of the allograft environment."

The work grew out of their knowledge that the HLA-G family is one of the most prominently expressed HLA class I molecules in the placenta, with the job of protecting fetal tissue from the mother's immune system. "It's a remarkable example of immune accommodation in mammals," Dr. Zhang explained. "So we engineered hPSCs using CRISPR/Cas9 gene-editing technology for beta-2 microglobulin (?2m) knock out, or for biallelic knock-in of HLA-G1 within the endogenous ?2m loci. Elimination of the surface expression of the HLA proteins protected the hPSCs from cytotoxicity mediated by the CD8+ T and NK cells. The lack of surface expression also resulted in missing-self recognition and aberrant NK cell activation."

Dr. Jan Nolta, Editor-in-Chief of STEM CELLS, said, "the development of this method to shelter pluripotent stem cell derivatives from the immune system is a "game-changer" in the field. If this innovative technique can next be carried forward to clinical trials it could mean that recipients of the cells would need no immune suppression. We are very happy to publish this novel and potentially paradigm-shifting research."

Dr. Ma added, "To the best of our knowledge, this is the first study to report that engineered β2m- HLA-G5 proteins are soluble, secretable and can efficiently protect donor cells from immune responses. This not only provides a novel strategy to generate hypoimmunogenic human cells for allografting, but also sheds light on the role of HLA-G in immune tolerance during pregnancy and organ transplantation."

The next step, the two say, will be to address any safety concerns with the engineered cells, including whether they have a higher risk of growing tumors given their capability to escape immune surveillance. "Introducing a controllable suicide gene might provide an efficient way to remove the risk," Dr. Ma said. "If all goes well, the engineered hPSCs could serve as an unlimited cell source for generating universally compatible 'off-the-shelf' cell grafts in the future."
The full article, "Generation of hypoimmunogenic HPSCs via expression of membrane-bound and secreted β2m-hla-g fusion proteins," can be accessed at

About the Journal:STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. The journal covers all aspects of stem cells: embryonic stem cells/induced pluripotent stem cells; tissue-specific stem cells; cancer stem cells; the stem cell niche; stem cell epigenetics, genomics and proteomics; and translational and clinical research. STEM CELLS is co-published by AlphaMed Press and Wiley.

About AlphaMed Press: Established in 1983, AlphaMed Press with offices in Durham, NC, San Francisco, CA, and Belfast, Northern Ireland, publishes three internationally renowned peer-reviewed journals with globally recognized editorial boards dedicated to advancing knowledge and education in their focused disciplines. STEM CELLS® ( is the world's first journal devoted to this fast paced field of research. THE ONCOLOGIST® ( is devoted to community and hospital-based oncologists and physicians entrusted with cancer patient care. STEM CELLS TRANSLATIONAL MEDICINE® ( is dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

About Wiley: Wiley, a global company, helps people and organizations develop the skills and knowledge they need to succeed. Our online scientific, technical, medical and scholarly journals, combined with our digital learning, assessment and certification solutions, help universities, learned societies, businesses, governments and individuals increase the academic and professional impact of their work. For more than 200 years, we have delivered consistent performance to our stakeholders. The company's website can be accessed at

AlphaMed Press

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at