Estimation of carbonate stratal completeness via stratigraphic forward modeling

September 15, 2020

Strata completeness refers to "the fraction of time intervals of some specified length (t) that have been preserved". Since the 1780s, it has been widely accepted that most stratigraphic sections are riddled with gaps and are discontinuous over a range of temporal scales. Recognizing stratal disconformities or hiatal surfaces, and quantifying the stratal completeness of carbonate/clastics are essential for: (1) adequately constructing time series of palaeoclimatic and palaeobiologic changes, (2) understanding the impact of orbital forcing and sea-level changes on the geochemical signals within the strata, (3) enhancing interpretations of time series of depositional settings and sedimentary processes, and (4) hydrocarbon explorations. Although many researchers have attempted to delineate strata completeness using different approaches, such as statistical method, dating techniques, physical modeling, stochastic modeling and stratigraphic forward modeling, there are still some unresolved issues relating to the topics, and especially regarding quantitative determination of strata completeness and key factors affecting it.

Researchers from China University of Petroleum (East China) investigated carbonate deposition with different depositional environments. They firstly constructed a three-dimensional basin-fill model using sedimentary process-based stratigraphic forward modelling and then extracted crucial information of both "depth domain" and "time domain" from the 3D model to probe sedimentary evolution process, delineate hiatus surfaces and quantitatively determine the completeness of strata in the platform margin, slope and basin facies (Figure 1).

Through sensitivities analysis, the researchers have also demonstrated that the stratal completeness appears to be controlled by sea level changes, depositional environments, carbonate growth rates and tectonic subsidence patterns in various ways (Figure 2).

This study concludes that the sedimentary process-based SFM approach is quite effective in determining stratal completeness and its characters within a stratigraphic sequence by taking the full advantage of information from both the depth domain and corresponding time domain information in a 3D SFM model. It enables the reconstruction of sedimentary evolution by considering various geological processes (e.g., deposition, erosion or hiatus) holistically and provides a novel approach for interpreting palaeo-depositional environments. Knowledge on the completeness of a stratigraphic sequence is also crucial for reservoir quality assessment and predicting hydrocarbon migration and entrapment.
This research was funded by Chinese National Key R & D Project (Grant No. 2019YFC0605501), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010401), National Natural Science Foundation of China (Grant No. 41821002) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BD018).

See the article: Liu J, Liu K. 2020. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling. Science China Earth Sciences,

Science China Press

Related Sea Level Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

From sea to shining sea: new survey reveals state-level opinions on climate change
A new report analyzing state-level opinions on climate change finds the majority of Americans believe in and want action on climate change--but factors like state politics and local climate play important roles.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.

As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Read More: Sea Level News and Sea Level Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to