Nav: Home

Estimation of carbonate stratal completeness via stratigraphic forward modeling

September 15, 2020

Strata completeness refers to "the fraction of time intervals of some specified length (t) that have been preserved". Since the 1780s, it has been widely accepted that most stratigraphic sections are riddled with gaps and are discontinuous over a range of temporal scales. Recognizing stratal disconformities or hiatal surfaces, and quantifying the stratal completeness of carbonate/clastics are essential for: (1) adequately constructing time series of palaeoclimatic and palaeobiologic changes, (2) understanding the impact of orbital forcing and sea-level changes on the geochemical signals within the strata, (3) enhancing interpretations of time series of depositional settings and sedimentary processes, and (4) hydrocarbon explorations. Although many researchers have attempted to delineate strata completeness using different approaches, such as statistical method, dating techniques, physical modeling, stochastic modeling and stratigraphic forward modeling, there are still some unresolved issues relating to the topics, and especially regarding quantitative determination of strata completeness and key factors affecting it.

Researchers from China University of Petroleum (East China) investigated carbonate deposition with different depositional environments. They firstly constructed a three-dimensional basin-fill model using sedimentary process-based stratigraphic forward modelling and then extracted crucial information of both "depth domain" and "time domain" from the 3D model to probe sedimentary evolution process, delineate hiatus surfaces and quantitatively determine the completeness of strata in the platform margin, slope and basin facies (Figure 1).

Through sensitivities analysis, the researchers have also demonstrated that the stratal completeness appears to be controlled by sea level changes, depositional environments, carbonate growth rates and tectonic subsidence patterns in various ways (Figure 2).

This study concludes that the sedimentary process-based SFM approach is quite effective in determining stratal completeness and its characters within a stratigraphic sequence by taking the full advantage of information from both the depth domain and corresponding time domain information in a 3D SFM model. It enables the reconstruction of sedimentary evolution by considering various geological processes (e.g., deposition, erosion or hiatus) holistically and provides a novel approach for interpreting palaeo-depositional environments. Knowledge on the completeness of a stratigraphic sequence is also crucial for reservoir quality assessment and predicting hydrocarbon migration and entrapment.
-end-
This research was funded by Chinese National Key R & D Project (Grant No. 2019YFC0605501), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010401), National Natural Science Foundation of China (Grant No. 41821002) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BD018).

See the article: Liu J, Liu K. 2020. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling. Science China Earth Sciences, https://doi.org/10.1007/s11430-020-9660-8

Science China Press

Related Sea Level Articles:

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.
Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.
UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.
Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.
How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.
As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.
Why is sea level rising faster in some places along the US East Coast than others?
Sea levels are rising globally from ocean warming and melting of land ice, but the seas aren't rising at the same rate everywhere.
Snow over Antarctica buffered sea level rise during last century
A new NASA-led study has determined that an increase in snowfall accumulation over Antarctica during the 20th century mitigated sea level rise by 0.4 inches.
Global sea level could rise 50 feet by 2300, study says
Global average sea-level could rise by nearly 8 feet by 2100 and 50 feet by 2300 if greenhouse gas emissions remain high and humanity proves unlucky, according to a review of sea-level change and projections by Rutgers and other scientists.
Antarctica ramps up sea level rise
Ice losses from Antarctica have increased global sea levels by 7.6 mm since 1992, with two fifths of this rise (3.0 mm) coming in the last five years alone.
More Sea Level News and Sea Level Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.