Nav: Home

From star to solar system: How protoplanetary rings form in primordial gas clouds

September 15, 2020

WASHINGTON, September 15, 2020 -- Four-hundred fifty light-years from Earth, a young star is glowing at the center of a system of concentric rings made from gas and dust, and it is producing planets, one for each gap in the ring.

Its discovery has shaken solar system origin theories to their core. Mayer Humi, a scientist from the Worcester Polytechnic Institute, believes it provides an apt study target for theories about protoplanetary rings around stars. The research is published in the Journal of Mathematical Physics, by AIP Publishing.

The star, HL Tauri, is located in the constellation Taurus and awakened interest in Pierre-Simon Laplace's 1796 conjecture that celestial clouds of gas and dust around new stars condense to form rings and then planets. An exciting image of HL Tauri captured in 2014 by the Atacama Large Millimeter Array is the first time planetary rings have been photographed in such crisp detail, an observational confirmation of Laplace's conjecture.

"We can observe many gas clouds in the universe that can evolve into a solar system," Humi said. "Recent observational data shows solar systems are abundant in the universe, and some of them might harbor different types of life."

Humi, alongside some of the greatest astronomers throughout history, wondered about the creation of solar systems and their evolution in the universe. How do they form and what trajectory will they follow in the future?

"The basic issue was and is how a primordial cloud of gas can evolve under its own gravitation to create a solar system," Humi said.

Humi uses the Euler-Poisson equations, which describe the evolution of gas clouds, and reduces them from six to three model equations to apply to axi-symmetric rotating gas clouds.

In the paper, Humi considers the fluid in the primordial gas cloud to be an incompressible, stratified fluid flow and derives time dependent solutions to study the evolution of density patterns and oscillations in the cloud.

Humi's work shows that, with the right set of circumstances, rings could form from the cloud of dust and gas, and it lends credence to Laplace's 1796 hypothesis that our solar system formed from a similar dust and gas cloud around the sun.

"I was able to present three analytical solutions that demonstrate rings can form, insight that cannot be obtained from the original system of equations," Humi said. "The real challenge is to show that the rings can evolve further to create the planets."
-end-
The article, "On the evolution of a primordial interstellar gas cloud," is authored by Mayer Humi. The article will appear in Journal of Mathematical Physics on Sept. 15, 2020 (DOI: 10.1063/1.5144917). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5144917.

ABOUT THE JOURNAL

Journal of Mathematical Physics publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories. See https://aip.scitation.org/journal/jmp.

American Institute of Physics

Related Evolution Articles:

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.