Nav: Home

Study connects hormones we're born with to lifetime risk for immunological diseases

September 15, 2020

Differences in biological sex can dictate lifelong disease patterns, says a new study by Michigan State University researchers that links connections between specific hormones present before and after birth with immune response and lifelong immunological disease development.

Published in the most recent edition of the Proceedings of the National Academy of Sciences, the study answers questions about why females are at increased risk for common diseases that involve or target the immune system like asthma, allergies, migraines and irritable bowel syndrome. The findings by Adam Moeser, Emily Mackey and Cynthia Jordan also open the door for new therapies and preventatives

"This research shows that it's our perinatal hormones, not our adult sex hormones, that have a greater influence on our risk of developing mast cell-associated disorders throughout the lifespan," says Moeser, Matilda R. Wilson Endowed Chair, professor in the Department of Large Animal Clinical Sciences and the study's principle investigator. "A better understanding of how perinatal sex hormones shape lifelong mast cell activity could lead to sex-specific preventatives and therapies for mast cell-associated diseases."

Mast cells are white blood cells that play beneficial roles in the body. They orchestrate the first line of defense against infections and toxin exposure and play an important role in wound healing, according to the study, "Perinatal Androgens Organize Sex Differences in Mast Cells and Attenuate Anaphylaxis Severity into Adulthood."

However, when mast cells become overreactive, they can initiate chronic inflammatory diseases and, in certain cases, death. Moeser's prior research linked psychological stress to a specific mast cell receptor and overreactive immune responses.

Moeser also previously discovered sex differences in mast cells. Female mast cells store and release more inflammatory substances like proteases, histamine and serotonin, compared with males. Thus, female mast cells are more likely than male mast cells to kick-start aggressive immune responses. While this may offer females the upper hand in surviving infections, it also can put females at higher risk for inflammatory and autoimmune diseases.

"IBS is an example of this," says Mackey, whose doctoral research is part of this new publication.

"While approximately 25% of the U.S. population is affected by IBS, women are up to four times more likely to develop this disease than men."

Moeser, Mackey and Jordan's latest research explains why these sex-biased disease patterns are observed in both adults and prepubertal children. They found that lower levels of serum histamine and less-severe anaphylactic responses occur in males because of their naturally higher levels of perinatal androgens, which are specific sex hormones present shortly before and after birth.

"Mast cells are created from stem cells in our bone marrow," Moeser said. "High levels of perinatal androgens program the mast cell stem cells to house and release lower levels of inflammatory substances, resulting in a significantly reduced severity of anaphylactic responses in male newborns and adults."

"We then confirmed that the androgens played a role by studying males who lack functional androgen receptors," says Jordan, professor of Neuroscience and an expert in the biology of sex differences.

While high perinatal androgen levels are specific to males, the researchers found that while in utero, females exposed to male levels of perinatal androgens develop mast cells that behave more like those of males.

"For these females, exposure to the perinatal androgens reduced their histamine levels and they also exhibited less-severe anaphylactic responses as adults," says Mackey, who is currently a veterinary medical student at North Carolina State University.

In addition to paving the way for improved and potentially novel therapies for sex-biased immunological and other diseases, future research based will help researchers understand how physiological and environmental factors that occur early in life can shape lifetime disease risk, particularly mast cell-mediated disease patterns.

"While biological sex and adult sex hormones are known to have a major influence on immunological diseases between the sexes, we're learning that the hormones that we are exposed to in utero may play a larger role in determining sex differences in mast cell-associated disease risk, both as adults and as children," Moeser said.
-end-
For more information on Moeser's research, go to the Gastrointestinal Stress Biology Laboratory. Also, visit the MSU College of Veterinary Medicine's website for more about its research efforts.

(Note for media: Please include the following link to the study in all online media coverage: https://www.pnas.org/content/early/2020/09/10/1915075117)

Michigan State University

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.