Nav: Home

Arizona COVID-19 Genomics Union tracks strains of SARS-CoV-2

September 15, 2020

FLAGSTAFF, Ariz. -- Sept. 15, 2020 -- Initial findings reported by the Arizona COVID-19 Genomics Union (ACGU) suggest that following Arizona's first reported case of COVID-19 in late January, the state experienced no cases that went undetected and was COVID-free until at least 11 distinct incursions occurred between mid-February and early April.

The published results appear in the scientific journal mBio.

Faculty at the Translational Genomics Research Institute (TGen), an affiliate of City of Hope, Northern Arizona University (NAU), University of Arizona (UArizona) and Arizona State University (ASU) launched the ACGU in April with the express purpose of tracking the causative agent of COVID-19, SARS-CoV-2: how it evolves and how it spreads into, within and out of Arizona.

The ACGU sequenced the SARS-CoV-2 genomes in as many virus-positive patient samples in Arizona as possible, and working with Arizona's public health officials, applied the results toward statewide efforts to test and track patients, as well as provide guidance for Arizona public policy makers.

Quick action by ASU and Maricopa County public health officials, ACGU scientists agree, likely kept the first identified COVID-19 patient in Arizona -- a student who had just returned from Hubei, the Chinese province where the disease originated -- from igniting an outbreak, and prevented Arizona from becoming an early epicenter for the contagion.

"This is a great example of how a rapid and thorough public health response can be successful in preventing the spread of this disease," said ACGU Director Dr. Paul Keim, Regents' Professor of Biological Sciences and Cowden Endowed Chair in Microbiology at NAU and Executive Director of NAU's Pathogen and Microbiome Institute.

"Similar steps could be taken when shaping future efforts to reopen businesses and schools, even though the virus continues to circulate and people remain susceptible," added Keim, who is also a Distinguished Professor and Co-Director of TGen's Pathogen and Microbiome Division.

Dr. Michael Worobey, an ACGU co-founder and the head of University of Arizona's Department of Ecology and Evolutionary Biology, agrees.

"It's a combination of the patient doing the right things to isolate himself and be aware that he possibly had this disease, and public health officials doing all the right things. Stopping an incursion of COVID-19 was a victory for the state of Arizona," Dr. Worobey said.

This bought Arizona valuable time for preparedness efforts. The first reported case of "community" transmission occurred in Arizona in early March descended from the Washington state outbreak that was discovered in February. More than 80% of the SARS-CoV-2 genome sequences from Arizona COVID-19 cases descended from at least 11 separate lineages that were initially circulating widely in Europe, and by travel have since dominated the outbreak throughout the U.S. None of the observed transmission clusters are epidemiologically linked to the original travel-related case in the Arizona, suggesting successful early isolation and quarantine.

The ACGU uses state-of-the-art sequencers, custom computational analysis workflows, and supercomputers to determine the sequence of the virus's RNA genome, which is just under 30,000 bases long. In contrast, there are nearly 3 billion bases in the human genome, which determine traits as simple as eye and hair color, and as complex as an individual's propensity for cancer and other disease.

TGen has so far sequenced SARS-CoV-2 genomes from nearly 3,000 COVID-19 positive samples for the ACGU, and additional sequencing was performed at ASU and UArizona, from among the more than 200,000 positive cases in Arizona, making it one of the most robust such efforts in the nation. ACGU receives Arizona samples collected by state, county, tribal and private healthcare systems.

ACGU scientists take advantage of small changes or mutations in the virus' genome, which naturally occur over time as the virus reproduces, to track the spread of the virus. By comparing mutations observed in Arizona to those present in strains circulating across the globe, they can determine when and from where the virus has been introduced to Arizona.

Using molecular clock analyses, researchers found that the majority of Arizona sequences are represented by two lineages -- and several sub-lineages -- most of which were likely introduced through domestic travel, but with some evidence for international importation.

"Through the ACGU, we are harnessing expertise in virology, genomics, evolution and bioinformatics from throughout Arizona in order to rapidly distill these genomic data into actionable insights that can complement the state's public health response," Dr. Keim said. "These results demonstrate the power of public health contact tracing and self-isolation following a positive test for stemming the tide of infections moving forward."

Dr. David Engelthaler, Director of TGen North in Flagstaff, which includes the institute's infectious disease branch, said the initial ACGU findings show how each community, each state is writing its own story for what is happing in the COVID-19 pandemic.

"We need to understand all of those plot lines that have led to where we are now," said Dr. Engelthaler, another of the co-founders of the ACGU. "Once this disease was detected in Arizona on Jan. 26, public health immediately jumped in to make sure that all contacts were identified, samples were collected and the patient was watched very closely for the next couple of weeks to make sure there were not any more cases."

In the coming months, he said, it will be necessary to track COVID-19 outbreaks and build epidemiological walls around each case, especially for those most at risk: persons older than 65, those in long-term care facilities, prisons, and those with pre-existing health problems.

"When you don't have eyes on this, when you don't have contact tracing, then it can really easily move from person-to-person," Dr. Engelthaler said. "It's really useful for public policy makers to be making locally-informed decisions."

Dr. Efrem Lim, a virologist who leads the ASU team, said the SARS-CoV-2 genome sequence data can give health care providers and public policy makers an edge in fighting the pandemic.

"Tracking the transmission of the virus and its mutations ensures that therapeutics and vaccines being developed are on the right course," said Dr. Lim, an assistant professor at ASU's Biodesign Institute. "We now have a handle on what the SARS-CoV-2 virus in our communities looks like at the sequence level."
-end-
This study -- An Early Pandemic Analysis of SARS-CoV-2 Population Structure and Dynamics in Arizona -- was supported by: The NARBHA Institute, Flinn Foundation, The Virginia G. Piper Charitable Trust, Blue Cross and Blue Shield of Arizona, the National Institutes of Health, the David and Lucile Packard Foundation, the University of Arizona College of Science and Office of Research Innovation and Impact, and BIO5 Institute.

The authors acknowledge the critical role the Arizona Department of Health Services and multiple county and tribal health departments play in directing samples to the ACGU to be sequenced. Computational analyses were run on Northern Arizona University's Monsoon computing cluster, funded by Arizona's Technology and Research Initiative Fund (TRIF), administered by the Arizona Board of Regents. Additional analysis efforts also were funded by TRIF. Software development efforts were funded in part by the Chan-Zuckerberg Initiative and the Alfred P. Sloan Foundation. The Cowden Endowment for Microbiology provided funds to support salaries.

About TGen, an affiliate of City of Hope

Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life-changing results. TGen is affiliated with City of Hope, a world-renowned independent research and treatment center for cancer, diabetes and other life-threatening diseases: http://www.cityofhope.org. This precision medicine affiliation enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. TGen is focused on helping patients with neurological disorders, cancer, diabetes and infectious diseases through cutting-edge translational research (the process of rapidly moving research toward patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and complex rare diseases in adults and children. Working with collaborators in the scientific and medical communities worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: http://www.tgen.org. Follow TGen on Facebook, LinkedIn and Twitter @TGen.

Media Contact:

Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

About Northern Arizona University

Northern Arizona University is a higher-research institution providing exceptional educational opportunities in Arizona and beyond. NAU delivers a student-centered experience to its 31,000 students in Flagstaff, statewide and online through rigorous academic programs in a supportive, inclusive and diverse environment. Dedicated, world-renowned faculty help ensure students achieve academic excellence, experience personal growth, have meaningful research opportunities and are positioned for personal and professional success.

Media Contact:

Diane Rechel
Communications Officer
928-225-0483
Diane.Rechel@nau.edu

About Arizona State University

Arizona State University has developed a new model for the American Research University, creating an institution that is committed to access, excellence and impact. ASU measures itself by those it includes, not by those it excludes. As the prototype for a New American University, ASU pursues research that contributes to the public good, and ASU assumes major responsibility for the economic, social and cultural vitality of the communities that surround it.

Media contact:

Joe Caspermeyer
Manager, Natural Sciences
Media Relations & Strategic Communications
480-727-4858
Joseph.Caspermeyer@asu.edu

The Translational Genomics Research Institute

Related Genome Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.