New way to protect brain from stroke damage

September 16, 2004

Researchers have uncovered a new culprit behind the brain injury suffered by stroke victims. Their new study, published in the Sept. 17 issue of Cell, links brain cell damage to a rise in brain acidity following the oxygen depletion, or ischemia, characteristic of stroke. The results may lead to new therapies designed to avert the often debilitating effects of stroke, for which successful treatments are currently lacking, the researchers said.

A series of experiments in laboratory dishes and in animals implicates a recently described class of membrane ion channels, called acid-sensing ion channels (ASICs), to the influx of calcium in nerve cells starved of oxygen and subjected to acidic conditions. That calcium overload, long attributed to another group of cellular components, is essential for stroke injury as it sets off a cascade of events toxic to cells, said neurophysiologist and lead author of the study (Zhi-Gang Xiong of Robert S. Dow Neurobiology Laboratories in Portland, Oregon).

What's more, the team reports, rats injected with agents known to block ASICs--including the venom of a tarantula spider--exhibited a reduction in brain damage from ischemia. Mice lacking a functional copy of the ASIC gene were similarly resistant to stroke damage, they found.

"Our study offers multiple lines of evidence that reveal acid-sensing ion channels as major players in the damage suffered by stroke victims," Xiong said. "Furthermore, we found that existing pharmacologic agents that block those channels can dramatically reduce the amount of brain injury."

In the United States, stroke is the leading cause of severe, long-term disability and the third leading cause of death, according to the American Stroke Association. About 700,000 Americans have a stroke each year--one every 45 seconds.

A type of cardiovascular disease, stroke affects arteries of the brain. In ischemic stroke, the most common form, a blood vessel that carries oxygen and nutrients to the brain becomes blocked by a clot. As a result, part of the brain fails to get the oxygen it needs, a condition that damages nerve cells. The effects of a stroke, which can include paralysis and problems with language and vision, depend on several factors including the location of the obstruction and how much brain tissue is affected. The new work identifies a mechanism whereby acidic brain conditions following ischemia spur a portion of the damage.

The normal brain requires complete oxidation of glucose to fulfill its energy requirements, the researchers explained. During ischemia, oxygen depletion forces the brain to obtain energy through anaerobic glycolysis, a process which results in the accumulation of lactic acid. Earlier work indicated that such acidic conditions aggravate ischemic brain injury. However, the group added, the mechanisms had remained unclear.

The team's new work resolves that uncertainty. In laboratory dishes, acidic and ischemic conditions activate ASICs in mouse brain neurons, leading to an influx of calcium, they showed. Two agents known to block ASICs--the drug amiloride and the tarantula venom called PcTX--protected the nerve cells against acid-induced injury. Cells lacking ASIC1a, the calcium-permeable type of the acid-sensing channels, were resistant to acid injury.

To test that activation of ASIC1a is involved in ischemic brain injury in a live animal, the team tested the protective effect of ASIC blockers in an ischemic rat. Rats injected with PcTX, which is known to specifically block ASIC1a, showed a 60 percent reduction in the area of brain damage following ischemia compared to control animals. Mice lacking the ASIC1a gene also showed significantly less ischemic brain injury.

Scientists had long considered another class of cellular components, NMDA receptors, as the main target responsible for calcium overload in the ischemic brain, according to the researchers. "However, recent clinical efforts to prevent brain injury through the therapeutic use of NMDA receptor antagonists have been disappointing," they wrote.

The new study pinpoints a new target underlying toxic levels of calcium in the brain, disclosing a potential new therapeutic target for stroke, the researchers added. Blockers of ASIC1a, either alone or in concert with other neuroprotective methods, might therefore prove useful for stroke therapy, they said.

Zhi-Gang Xiong, Xiao-Man Zhu, Xiang-Ping Chu, Manabu Minami, Jessica Hey, Wen-Li Wei, John F. MacDonald, John A Wemmie, Margaret P Price, Michael J Welsh, and Roger P. Simon: "Neuroprotection in Ischemia: Blocking Calcium-Permeable Acid-Sensing Ion Channels"
-end-
Publishing in Cell, Volume 118, Number 6, September 17, 2004, pages 687-698.

Cell Press

Related Stroke Articles from Brightsurf:

Stroke alarm clock may streamline and accelerate time-sensitive acute stroke care
An interactive, digital alarm clock may speed emergency stroke care, starting at hospital arrival and through each step of the time-sensitive treatment process.

Stroke patients with COVID-19 have increased inflammation, stroke severity and death
Stroke patients who also have COVID-19 showed increased systemic inflammation, a more serious stroke severity and a much higher rate of death, compared to stroke patients who did not have COVID-19, according a retrospective, observational, cross-sectional study of 60 ischemic stroke patients admitted to UAB Hospital between late March and early May 2020.

'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.

More stroke awareness, better eating habits may help reduce stroke risk for young adult African-Americans
Young African-Americans are experiencing higher rates of stroke because of health conditions such as high blood pressure, diabetes and obesity, yet their perception of their stroke risk is low.

How to help patients recover after a stroke
The existing approach to brain stimulation for rehabilitation after a stroke does not take into account the diversity of lesions and the individual characteristics of patients' brains.

Kids with headache after stroke might be at risk for another stroke
A new study has found a high incidence of headaches in pediatric stroke survivors and identified a possible association between post-stroke headache and stroke recurrence.

High stroke impact in low- and middle-income countries examined at 11th World Stroke Congress
Less wealthy countries struggle to meet greater need with far fewer resources.

Marijuana use might lead to higher risk of stroke, World Stroke Congress to be told
A five-year study of hospital statistics from the United States shows that the incidence of stroke has risen steadily among marijuana users even though the overall rate of stroke remained constant over the same period.

We need to talk about sexuality after stroke
Stroke survivors and their partners are not adequately supported to deal with changes to their relationships, self-identity, gender roles and intimacy following stroke, according to new research from the University of Sydney.

Standardized stroke protocol can ensure ELVO stroke patients are treated within 60 minutes
A new study shows that developing a standardized stroke protocol of having neurointerventional teams meet suspected emergent large vessel occlusion (ELVO) stroke patients upon their arrival at the hospital achieves a median door-to-recanalization time of less than 60 minutes.

Read More: Stroke News and Stroke Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.