Good earth: Brown chemists show origin of soil-scented geosmin

September 16, 2007

PROVIDENCE, R.I. [Brown University] -- Brown University chemists have found the origins of an odor - the sweet smell of fresh dirt. In Nature Chemical Biology, the Brown team shows that the protein that makes geosmin - source of the good earth scent - has two similar but distinct halves, each playing a critical role in making this organic compound.

"Everyone is familiar with the wonderful smell of warm earth," said David Cane, professor of chemistry at Brown who oversaw the research. "Now we know precisely how it is made."

Geosmin, which literally translates to "earth smell," was scientifically identified more than 100 years ago. In soil, bacteria produce the chemical compound. In water, blue-green algae make it. Along with the pleasant scent of warm, moist soil, geosmin is also responsible for the muddy "off" taste in some drinking water. That is why the substance is of interest to water purification experts and even vintners, who want to keep the benign but pungent substance out of their wine.

Until recently, scientists knew little about how geosmin is made. Then, a few years ago, Cane found the gene responsible for geosmin formation in Streptomyces coelicolor, a strain of plant-munching bacteria found in soil. Last year, the team discovered that a single protein converts farnesyl diphosphate to geosmin.

In their new work, Cane and his lab team found that this protein, called germacradienol/geosmin synthase, folds into two distinct but connected parts, similar to a dumbbell. One piece is responsible for the first half of the reaction, cranking out a chemical that wafts over to the companion bit of protein, which then produces geosmin.

"We found that geosmin is created by this bifunctional enzyme," Cane said. "The two steps of the process that forms geosmin are metabolically related. This finding was a real surprise. This is the first bifunctional enzyme found for this type of terpene, the class of chemicals geosmin belongs to."

Jiaoyang Jiang, a Brown graduate student in the Department of Chemistry and lead author of the journal article, said microbiologists working in water purification plants will be most interested in knowing the origins of geosmin. By understanding precisely how the substance is synthesized, Jiang said, these experts may find a way to block it - avoiding the foul taste that keeps people away from the tap.

"Geosmin may smell good in the garden, but not in the glass," she said.
-end-
Xiaofei He, a former Brown graduate student, contributed to the research. The work was funded by the National Institute of General Medical Sciences.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Brown University

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.