Why the craving for cocaine won't go away

September 16, 2010

People who have used cocaine run a great risk of becoming addicted, even after long drug-free periods. Now researchers at Linköping University and their colleagues can point to a specific molecule in the brain as a possible target for treatment to prevent relapses.

Drugs are addictive because they "hijack" the brain's reward system, which is actually intended to make it pleasurable to eat and have sex, behaviors that are necessary for survival and reproduction.

This "hijacking" is extremely long-lived and often leads to relapses into abuse, especially when the individual is exposed to stimuli in the surroundings that are associated with the drug. In an article in the prestigious Journal of Neuroscience the research team can now show that a receptor for the signal substance glutamate (mGluR5), in a part of the brain called the striatum, plays a major role in relapses.

The study, led by David Engblom, associate professor of neurobiology at Linköping University in Sweden, looks at what happens in individuals who lack the glutamate receptor. The experiments were performed on mice that were taught to ingest cocaine.

"Our findings show that the mice who lacked the receptor were less prone to relapse. This is due the fact that their reaction to reward had not been etched into their memories in the same ways as in normal mice. The receptor seems to be a prerequisite for objects or environments that were previously associated with taking drugs, or something else rewarding, to create a craving," says David Engblom.

He hopes that these findings and other studies of mechanisms underlying drug addiction can lead to forms of treatment based on what goes wrong in the brain of an addict.
-end-
Article: Incentive learning underlying cocaine-seeking requires mGluR5 receptors located on dopamine D1 receptor-expressing neurons by M. Novak, B. Halbout, E.C. O´Connor, J. Rordriguez Parkitna, T. Su, M, Chai, H.S. Crombag, A. Bilbao, R. Spanagel, D.N. Stephens, G. Schütz och D. Engblom.

The Journal of Neuroscience, September 8, 2010, 30(36):11973-11982; doi:10.1523/JNEUROSCI.2550-10.2010

Swedish Research Council

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.