Nav: Home

California sage-grouse remain genetically diverse... for now

September 16, 2015

Genetic diversity is essential for a species to be able to adapt to environmental change, and when habitat loss divides a population into small, isolated fragments, that can spell trouble. Northeastern California is at the far western end of the range of Greater Sage-Grouse (Centrocercus urophasianus), and the fringe population there is declining due to the ongoing invasion of their sagebrush habitat by cheatgrass and juniper. To determine whether the genetic diversity of birds in the region is suffering as a result, Dawn Davis of the University of Idaho and her colleagues spent three years collecting blood samples from California sage-grouse on their breeding grounds for a new study forthcoming in The Condor: Ornithological Applications. While they found no evidence that individual leks, or breeding sites, in California are genetically isolated from each other, and the overall genetic diversity of the California population was just as high as that in the core of the species' range. However, this doesn't mean that the future of these vulnerable birds is secure.

Every spring, sage-grouse gather at breeding sites called leks, where males put on elaborate displays to attract females. Davis and her colleagues collected blood from 167 grouse at 13 lek sites between 2007 and 2009.Their results suggest that there is a continuing exchange of genes between California leks, and possibly even with the adjacent Nevada population. "Sage-grouse occupy the western edge of their distribution in northeastern California and our study area was dominated by invasive annual grasses and encroaching conifer which has led to declines in sage-grouse populations," explains Davis. "Our study found that despite population declines and habitat loss, leks were not genetically differentiated, which was unexpected."

This may sound like good news, but it doesn't mean we can stop worrying about California's sage-grouse population. In a species where dispersal, the movement of individuals between breeding areas is limited, it can take several generations for effects of habitat fragmentation on genetic diversity to be detectable, and in the meantime the amount of suitable habitat in California continues to shrink.

"Although our results suggest that sage-grouse have tolerated some degree of habitat fragmentation without losing genetic diversity, continued habitat loss and deterioration will likely result in additional declines in this population," says Davis. "From a management perspective, we suggest that maintaining and improving habitat quality and connectivity of sage-grouse habitats in northeastern California will be critical for maintaining gene flow and will be necessary to sustain sage-grouse in northeastern California." This will mean knitting isolated population fragments back together, creating corridors of healthy sagebrush habitat so that dispersal can continue. Sage-grouse face an uncertain future throughout their range, and no one population or lek is expendable if these iconic western birds are going to continue to thrive.
-end-
"Genetic structure of Greater Sage-Grouse (Centrocercus urophasianus) in a declining, peripheral population" will be available September 16, 2015 at http://www.aoucospubs.org/toc/cond/117/4.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. It began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society.

Central Ornithology Publication Office

Related Genetic Diversity Articles:

Rare genetic disorders: New approach uses RNA in search for genetic triggers
In about half of all patients with rare hereditary disorders, it is still unclear what position of the genome is responsible for their condition.
Major genetic study identifies 12 new genetic variants for ovarian cancer
A genetic trawl through the DNA of almost 100,000 people, including 17,000 patients with the most common type of ovarian cancer, has identified 12 new genetic variants that increase risk of developing the disease and confirmed the association of 18 of the previously published variants.
Use of fetal genetic sequencing increases the detection rate of genetic findings
In a study to be presented Thursday, Jan. 26, in the oral plenary session at 8 a.m.
Diversity without limits
Now, researchers at Temple and Oakland universities have completed a new tree of prokaryotic life calibrated to time, assembled from 11,784 species of bacteria.
Threatened by diversity
Psychologist Brenda Major identifies what may be a key factor in many white Americans' support for Donald Trump.
Genetic diversity crucial to Florida scrub-jay's survival
Legendary conservationist Aldo Leopold once advised: 'To keep every cog and wheel is the first precaution of intelligent tinkering.' For the endangered Florida scrub-jay, new research shows that saving every last grouping among its small and scattered remnant populations is vital to preserving genetic diversity -- and the long-term survival of the species.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.
Expanded prenatal genetic testing may increase detection of carrier status for potentially serious genetic conditions
In an analysis that included nearly 350,000 adults of diverse racial and ethnic background, expanded carrier screening for up to 94 severe or profound conditions may increase the detection of carrier status for a variety of potentially serious genetic conditions compared with current recommendations from professional societies, according to a study appearing in the Aug.
Fix for 3-billion-year-old genetic error could dramatically improve genetic sequencing
Researchers found a fix for a 3-billion-year-old glitch in one of the major carriers of information needed for life, RNA, which until now produced errors when making copies of genetic information.
Genetic diversity important for plant survival when nitrogen inputs increase
Genetic diversity is important for plant species to persist in Northern forests that experience human nitrogen inputs.

Related Genetic Diversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...