Nav: Home

Uniquely human brain region enables punishment decisions

September 16, 2015

Humans are unique among social creatures in their willingness to bear personal costs to punish those who have harmed others. A study published September 16 in Neuron reveals new insights into our unparalleled sense of justice, specifically, the precise role of the dorsolateral prefrontal cortex (DLPFC)--one of the most recently evolved regions in the human brain. The findings reveal that DLPFC integrates information about a suspect's blameworthiness for wrongful acts and the resulting harm to others, enabling us to decide on the appropriate level of punishment.

"Despite the centrality of such third-party punishment decisions to modern institutions of justice, we don't know very much about how the brain combines evidence of intentionality and harm," says study first author Joshua Buckholtz of Harvard University. "Our study provides new insight into how humans make these judgments."

The success of our species is thought to rely largely on our capacity for large-scale cooperation; this, in turn, hinges on the uniquely human ability to establish and enforce social norms. To make decisions about how to punish those who violate these norms, it's necessary to integrate information about a suspect's culpability as well as the harmful consequences of the transgression. The DLPFC is well positioned to play this role; its cellular organization and high level of connectivity with other brain regions makes it specialized for integrating multiple streams of information in order to select appropriate responses. Others have shown that DLPFC performs this integrative role in non-social cognitive tasks, and the DLPFC appears to be activated in many studies of moral and legal norm-based decision-making. But until now, the precise role of DLPFC in making these judgments has been unclear.

To answer this question, Buckholtz and senior study author René Marois of Vanderbilt University used repetitive transcranial magnetic stimulation (rTMS)--a noninvasive way of stimulating the brain using magnetic fields --and functional magnetic resonance imaging (fMRI) in human subjects who made blameworthiness judgments and punishment decisions about a series of crime scenarios.

In each trial, subjects were shown a short written scenario describing a protagonist named John committing a crime, ranging from simple theft to assault and murder. In some cases, the crime was deliberate and John was fully responsible for his actions, but in other instances, his culpability was diminished due to duress, psychosis, or other mitigating factors. In separate sessions, subjects either rated John's blameworthiness or the severity of punishment he deserved.

The researchers first used rTMS to magnetically stimulate, and thereby temporarily disrupt, DLPFC activity in 66 healthy volunteers (half of whom received active rTMS; the other half received placebo or "sham" rTMS). DLPFC disruption reduced the level of punishment for wrongful acts without affecting blameworthiness ratings, suggesting that these two aspects of norm-based judgments rely on distinct cognitive and neurobiological processes. On closer inspection, the researchers found that rTMS only lowered punishment ratings when John's actions were deliberate but resulted in minimal harm. Further analysis revealed that DLPFC disruption caused subjects to base their punishment decisions more on the consequences of the crime rather than on John's intentions. The findings suggest that DLPFC plays a critical role in balancing information about intent and harm to enable appropriate punishment decisions.

A separate brain imaging experiment in the same study corroborated the main rTMS findings. Overall, DLPFC showed greater activity during punishment decisions compared to blameworthiness judgments. Moreover, DLPFC activation was sensitive to John's culpability level, but this effect was only found for punishment (not blameworthiness) judgments. The findings suggest that the DLPFC is not involved in assessing culpability per se; rather, this brain region uses information about culpability specifically to support punishment decision-making.

Taken together with past results, the findings suggest that the DLPFC receives relevant information about culpability and harmful consequences from other brain regions and then integrates this information to support punishment decision making. According to the authors, future studies should identify the precise computations involved in this integrative process.

In the meantime, the authors urge caution when it comes to interpreting the results, even though the findings suggest that a brief dose of magnetic stimulation could change how people make core legal judgments. "While this study does provide new insight into how human brains make decisions of the kind that judges and jurors make daily, the effects that we report are modest in size, and it's unclear how they would generalize to trial courts. The value of this study lies in its ability to reveal the basic mechanisms of norm-enforcement decisions," Marois says. "Magnetic brain stimulation will not be coming to a courtroom near you anytime soon.
-end-
This study was made possible through the generous support of the John D. and Catherine T. MacArthur Foundation Research Network on Law and Neuroscience, which fosters research collaboration between neuroscientists and legal scholars on matters of interest to both; the National Institute of Mental Health; the National Institute on Drug Abuse; the Sloan Foundation; the Brain and Behavior Research Foundation; and the Massachusetts General Hospital Center for Law, Brain, and Behavior.

Neuron, Buckholtz et al.:"From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms" http://dx.doi.org/10.1016/j.neuron.2015.08.023

Neuron, published by Cell Press, is a bimonthly journal that has established itself as one of the most influential and relied upon journals in the field of neuroscience and one of the premier intellectual forums of the neuroscience community. It publishes interdisciplinary articles that integrate biophysical, cellular, developmental, and molecular approaches with a systems approach to sensory, motor, and higher-order cognitive functions. For more information, please visit http://www.cell.com/neuron. To receive media alerts for Neuron or other Cell Press journals, please contact press@cell.com.

Cell Press

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.