Nav: Home

Uniquely human brain region enables punishment decisions

September 16, 2015

Humans are unique among social creatures in their willingness to bear personal costs to punish those who have harmed others. A study published September 16 in Neuron reveals new insights into our unparalleled sense of justice, specifically, the precise role of the dorsolateral prefrontal cortex (DLPFC)--one of the most recently evolved regions in the human brain. The findings reveal that DLPFC integrates information about a suspect's blameworthiness for wrongful acts and the resulting harm to others, enabling us to decide on the appropriate level of punishment.

"Despite the centrality of such third-party punishment decisions to modern institutions of justice, we don't know very much about how the brain combines evidence of intentionality and harm," says study first author Joshua Buckholtz of Harvard University. "Our study provides new insight into how humans make these judgments."

The success of our species is thought to rely largely on our capacity for large-scale cooperation; this, in turn, hinges on the uniquely human ability to establish and enforce social norms. To make decisions about how to punish those who violate these norms, it's necessary to integrate information about a suspect's culpability as well as the harmful consequences of the transgression. The DLPFC is well positioned to play this role; its cellular organization and high level of connectivity with other brain regions makes it specialized for integrating multiple streams of information in order to select appropriate responses. Others have shown that DLPFC performs this integrative role in non-social cognitive tasks, and the DLPFC appears to be activated in many studies of moral and legal norm-based decision-making. But until now, the precise role of DLPFC in making these judgments has been unclear.

To answer this question, Buckholtz and senior study author René Marois of Vanderbilt University used repetitive transcranial magnetic stimulation (rTMS)--a noninvasive way of stimulating the brain using magnetic fields --and functional magnetic resonance imaging (fMRI) in human subjects who made blameworthiness judgments and punishment decisions about a series of crime scenarios.

In each trial, subjects were shown a short written scenario describing a protagonist named John committing a crime, ranging from simple theft to assault and murder. In some cases, the crime was deliberate and John was fully responsible for his actions, but in other instances, his culpability was diminished due to duress, psychosis, or other mitigating factors. In separate sessions, subjects either rated John's blameworthiness or the severity of punishment he deserved.

The researchers first used rTMS to magnetically stimulate, and thereby temporarily disrupt, DLPFC activity in 66 healthy volunteers (half of whom received active rTMS; the other half received placebo or "sham" rTMS). DLPFC disruption reduced the level of punishment for wrongful acts without affecting blameworthiness ratings, suggesting that these two aspects of norm-based judgments rely on distinct cognitive and neurobiological processes. On closer inspection, the researchers found that rTMS only lowered punishment ratings when John's actions were deliberate but resulted in minimal harm. Further analysis revealed that DLPFC disruption caused subjects to base their punishment decisions more on the consequences of the crime rather than on John's intentions. The findings suggest that DLPFC plays a critical role in balancing information about intent and harm to enable appropriate punishment decisions.

A separate brain imaging experiment in the same study corroborated the main rTMS findings. Overall, DLPFC showed greater activity during punishment decisions compared to blameworthiness judgments. Moreover, DLPFC activation was sensitive to John's culpability level, but this effect was only found for punishment (not blameworthiness) judgments. The findings suggest that the DLPFC is not involved in assessing culpability per se; rather, this brain region uses information about culpability specifically to support punishment decision-making.

Taken together with past results, the findings suggest that the DLPFC receives relevant information about culpability and harmful consequences from other brain regions and then integrates this information to support punishment decision making. According to the authors, future studies should identify the precise computations involved in this integrative process.

In the meantime, the authors urge caution when it comes to interpreting the results, even though the findings suggest that a brief dose of magnetic stimulation could change how people make core legal judgments. "While this study does provide new insight into how human brains make decisions of the kind that judges and jurors make daily, the effects that we report are modest in size, and it's unclear how they would generalize to trial courts. The value of this study lies in its ability to reveal the basic mechanisms of norm-enforcement decisions," Marois says. "Magnetic brain stimulation will not be coming to a courtroom near you anytime soon.
-end-
This study was made possible through the generous support of the John D. and Catherine T. MacArthur Foundation Research Network on Law and Neuroscience, which fosters research collaboration between neuroscientists and legal scholars on matters of interest to both; the National Institute of Mental Health; the National Institute on Drug Abuse; the Sloan Foundation; the Brain and Behavior Research Foundation; and the Massachusetts General Hospital Center for Law, Brain, and Behavior.

Neuron, Buckholtz et al.:"From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms" http://dx.doi.org/10.1016/j.neuron.2015.08.023

Neuron, published by Cell Press, is a bimonthly journal that has established itself as one of the most influential and relied upon journals in the field of neuroscience and one of the premier intellectual forums of the neuroscience community. It publishes interdisciplinary articles that integrate biophysical, cellular, developmental, and molecular approaches with a systems approach to sensory, motor, and higher-order cognitive functions. For more information, please visit http://www.cell.com/neuron. To receive media alerts for Neuron or other Cell Press journals, please contact press@cell.com.

Cell Press

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...