Nav: Home

Mayo researchers identify protein -- may predict who will respond to PD-1 immunotherapy for melanoma

September 16, 2015

ROCHESTER, Minn. - Mayo Clinic researchers have identified a protein marker whose frequency may predict patient response to PD-1 blockade immunotherapy for melanoma. An abstract of their findings was presented today at the American Association for Cancer Research International Cancer Immunotherapy Conference in New York City.

"The discovery of biomarkers of sensitivity are vital not only for informing clinical decisions, but also to help identify which patients with melanoma, and possibly other malignancies, who are most likely to benefit from PD-1 blockade," says Roxana Dronca, M.D., a hematologist at Mayo Clinic and lead author of the abstract. "This will allow us to expose fewer patients to inadequate treatments, and their associated toxicities and costs."

The marker, Bim, is a protein that helps coordinate programmed cell death. This is a natural process that occurs in many cells, including T cells, a subset of immune cells that can recognize and kill tumor cells. Interaction of a molecule called PD-1 on T cells with a molecule called PD-L1 activates Bim and can induce T cell death. Tumors can exploit this process by overexpressing PD-L1 and killing T cells that could recognize and eliminate them.

In an effort to overcome the problem of tumors evading the immune system, researchers have generated biological molecules that block PD-1 from interacting with PD-L1. These PD-1 blockers have shown promise results in some cancer patients, but not others - prompting a search for markers that could predict how patients will respond to the molecules before treatment.

"If I know that a patient has a very high likelihood of responding to anti-PD-1 therapy, I'm going to be more inclined to recommend that treatment and feel better about the choice," Dr. Dronca says.

Researchers found that metastatic melanoma patients who responded to PD-1 blockade with pembrolizumab had more tumor-targeting T cells expressing Bim and PD-1 in their blood prior to therapy than did patients who did not respond. They also observed that this trend reversed after weeks of treatment suggesting that proportions of these cells can be measured to help clinicians decide which patients should and should not be treated with PD-1 blockade.

They also discovered that responders had higher levels of soluble PD-L1 in their blood prior to treatment. This suggests that PD-1 blockade is most effective when the PD-1:PD-L1 interaction plays a major role in disease - a finding that improves scientific understanding of the therapeutic mechanism of PD-1 blockade.
-end-
About the Mayo Clinic Cancer Center

As a leading institution funded by the National Cancer Institute, the Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy. For information on cancer clinical trials, call 1-855-776-0015 (toll-free).

About Mayo Clinic

Mayo Clinic is a nonprofit organization committed to medical research and education, and providing expert, whole-person care to everyone who needs healing. For more information, visit http://www.mayoclinic.org/about-mayo-clinic or http://newsnetwork.mayoclinic.org/.

Mayo Clinic

Related Melanoma Articles:

Immunity against melanoma is only skin deep
Researchers at Dartmouth's Norris Cotton Cancer Center find that unique immune cells, called resident memory T cells, do an outstanding job of preventing melanoma in patients who develop the autoimmune disease, vitiligo.
Researchers document how melanoma tumors form
University of Iowa researchers have documented in continuous, real time how melanoma cells form tumors.
New driver, target in advanced mucosal melanoma
A University of Colorado Cancer Center study published March 15, 2017, in the journal Melanoma Research uses the unique resource of over 600 melanoma samples collected at the university to demonstrate, for the first time, novel mutations involved in mucosal melanoma, paving the way for therapies to treat this overlooked subtype.
NIH study reveals how melanoma spreads
Newly identified genes and genetic pathways in primary melanoma -- a type of skin cancer -- could give researchers new targets for developing new personalized treatments for melanoma, and potentially other cancers.
Melanoma research breakthrough gives hope to treatment
A QUT-driven project has identified the way in which melanoma cells spread, opening up new pathways to treatment via drugs to 'turn off' the invasive gene.
More Melanoma News and Melanoma Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.