Nav: Home

Alzheimer's disease consists of 3 distinct subtypes, according to UCLA study

September 16, 2015

Alzheimer's disease, long thought to be a single disease, really consists of three distinct subtypes, according to a UCLA study.

The finding could lead to more highly targeted research and, eventually, new treatments for the debilitating neurological disorder, which robs people of their memories.

The study further found that one of the three variations, the cortical subtype, appears to be fundamentally a different condition than the other two, said Dr. Dale Bredesen, the study's author, a UCLA professor of neurology and member of the Easton Laboratory for Neurodegenerative Disease Research.

"Because the presentation varies from person to person, there has been suspicion for years that Alzheimer's represents more than one illness," said Bredesen, who also is the founding president of the Buck Institute for Research on Aging. "When laboratory tests go beyond the usual tests, we find these three distinct subtypes.

"The important implications of this are that the optimal treatment may be different for each group, there may be different causes, and, for future clinical trials, it may be helpful to study specific groups separately."

The subtypes are:
  • Inflammatory, in which markers such as C-reactive protein and serum albumin to globulin ratios are increased.
  • Non-inflammatory, in which these markers are not increased but other metabolic abnormalities are present.
  • Cortical, which affects relatively young individuals and appears more widely distributed across the brain than the other subtypes of Alzheimer's. It typically does not seem to cause memory loss at first, but people with this subtype of the disease tend to lose language skills. It is often misdiagnosed, typically affects people who do not have an Alzheimer's-related gene and is associated with a significant zinc deficiency.
The findings of the two-year study, which involved metabolic testing of 50 people, appear in the current issue of the peer-reviewed journal Aging.

No effective therapy for Alzheimer's exists. And scientists have yet to completely identify the cause, although multiple studies have pointed to metabolic abnormalities such as insulin resistance, hormonal deficiencies and hyperhomocysteinemia, a condition characterized by an abnormally high level of an amino acid in the blood.

In a 2014 paper, Bredesen showed that making lifestyle, exercise and diet changes designed to improve the body's metabolism reversed cognitive decline in nine out of 10 patients with early Alzheimer's disease or its precursors.

The current finding grew out of an extensive evaluation of the data from last year's study, and it could eventually help scientists pinpoint more precise targets for treatments -- the same approach that has led to major advances in treating other diseases.

For example, Bredesen explained, researchers have recently been able to develop precise treatments for cancer by sequencing tumor genomes and comparing them to the patients' genomes to better understand what drives the formation and growth of tumors.

"However, in Alzheimer's disease, there is no tumor to biopsy," Bredesen said. "So how do we get an idea about what is driving the process? The approach we took was to use the underlying metabolic mechanisms of the disease process to guide the establishment of an extensive set of laboratory tests, such as fasting insulin, copper-to-zinc ratio and dozens of others."

Going forward, Bredesen and his team will seek to determine whether the subtypes have different underlying causes, and whether they respond differently to potential treatments.

The need for a new approach to treat Alzheimer's is urgent. It is the most common age-related dementia, and the number of people with the disease in the U.S. is expected to increase to 15 million in 2050, from nearly 6 million today. The cost to treat people in the U.S. with Alzheimer's and other dementias is expected to be $226 billion in 2015 alone, and could reach $1.1 trillion in 2050.
-end-
The study was funded by the National Institutes of Health (AG165070, AG034427 and AGO36975), the Mary S. Easton Center for Alzheimer's Disease Research at UCLA, the Douglas and Ellen Rosenberg Foundation, the S.D. Bechtel, Jr. Foundation, the Joseph Drown Foundation, the Alzheimer's Association, the Accelerate Fund, the Buck Institute and Marin Community Foundation, the Michael and Catherine Podell Fund, Craig Johnson, Allan Bortell and Michaela Hoag.

University of California - Los Angeles Health Sciences

Related Disease Articles:

Findings support role of vascular disease in development of Alzheimer's disease
Among adults who entered a study more than 25 years ago, an increasing number of midlife vascular risk factors, such as obesity, high blood pressure, diabetes, high cholesterol and smoking, were associated with elevated levels of brain amyloid (protein fragments linked to Alzheimer's disease) later in life, according to a study published by JAMA.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Study links changes in oral microbiome with metabolic disease/risk for dental disease
A team of scientists from The Forsyth Institute and the Dasman Diabetes Institute in Kuwait have found that metabolic diseases, which are characterized by high blood pressure, high blood sugar, and obesity -- leads to changes in oral bacteria and puts people with the disease at a greater risk for poor oral health.
Fatty liver disease contributes to cardiovascular disease and vice versa
For the first time, researchers have shown that a bi-directional relationship exists between fatty liver disease and cardiovascular disease.
Seroprevalence and disease burden of chagas disease in south Texas
A paper published in PLOS Neglected Diseases led by researchers at the National School of Tropical Medicine at Baylor College of Medicine suggests that the disease burden in southern Texas is much higher than previously thought.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
Citrus fruits could help prevent obesity-related heart disease, liver disease, diabetes
Oranges and other citrus fruits are good for you -- they contain plenty of vitamins and substances, such as antioxidants, that can help keep you healthy.
Gallstone disease may increase heart disease risk
A history of gallstone disease was linked to a 23 percent increased risk of developing coronary heart disease.
New disease gene will lead to better screening for pediatric heart disease
Cardiomyopathy, or a deterioration of the ability of the heart muscle to contract, generally leads to progressive heart failure.
Early weight loss in Parkinson's disease patients may signify more serious form of disease
A study led by a Massachusetts General Hospital investigator finds evidence of an association between weight loss in patients with early Parkinson's disease and more rapid disease progression.

Related Disease Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...