Nav: Home

Surgical probe seeks out where cancer ends and healthy tissue begins

September 16, 2015

CHAMPAIGN, Ill. - A new surgical tool that uses light to make sure surgeons removing cancerous tumors "got it all" was found to correlate well with traditional pathologists' diagnoses in a clinical study, showing that the tool could soon enable reliable, real-time guidance for surgeons.

The interdisciplinary research team led by Stephen Boppart, a University of Illinois professor of electrical and computer engineering and of bioengineering, performed the study on 35 patients with breast cancers at the Carle Foundation Hospital in Urbana, Illinois. The results appear in the journal Cancer Research.

One difficult but crucial determination for surgeons and tissue pathologists is figuring out where a tumor ends. A solid tumor may be easily identifiable, but the tissue around the main body of the tumor, known as the margin, may contain cancerous cells as well. Because of this, excess tissue surrounding the tumor is typically removed, but the question lingers of whether any cancer cells remain to re-emerge later as tumors.

"In almost all solid-tumor surgeries, there's a question of margins," said Dr. Boppart, who also is a medical doctor. "Typically, surgeons will remove the tissue mass that contains the tumor and will send it to the lab. The pathologist will process, section and stain the tissue, then examine the thin sections on microscope slides. They look at the structure of the cells and other features of the tissue. The diagnosis is made based on subjective interpretation and often other pathologists are consulted. This is what we call the gold standard for diagnosis."

The new device is a hand-held probe based on a technology called optical coherence tomography (OCT) that uses light to image tissue in real time. Cancer cells and normal tissue scatter light differently because they have different microstructural and molecular features, Boppart said, so OCT gives physicians a way to quantitatively measure the cellular feature of a tumor. Surgeons can pass the OCT wand over a section of tissue and see a video on a screen, with no special chemical stains or lengthy tissue processing required.

"In many cases, you can't tell the difference between cancer cells and normal tissue with the naked eye, but with OCT they're very different," said Boppart, who also is affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

In the clinical study, surgeons treated patients according to the standard surgical procedure, but OCT data were collected from the margin of the tumor cavity and the margin of the removed tissue mass during surgery so that the results could be compared later. The study found that the OCT device analysis identified the differences between normal and cancerous tissue with 92 percent sensitivity and 92 percent specificity. They also found that the way that OCT spotted cancer in the removed tissue was closely correlated with the results from the postoperative pathology reports, which often came days later.

"For the first time, this study demonstrates the use of OCT for imaging tumor margins within the tumor cavity, in the patient, during surgery," Boppart said. "It is likely better to check to see if any residual tumor cells might be left behind, rather than checking the tissue mass that was taken out. Then, the surgeon can intervene immediately."

The researchers will continue clinical studies with the OCT device, looking at other types of solid-state tumors. Diagnostic Photonics, a start-up company Boppart co-founded that also collaborated on the study, is commercializing the OCT probe technology for broader use.

"Ultimately, new technological innovations like this in medicine and surgery are going to improve our health care and save lives. That's when this work will be most rewarding," Boppart said.
-end-
The National Institutes of Health supported this work.

Editor's notes: Editor's note: To reach Stephen Boppart, call 217-244-7479; email: boppart@illinois.edu.

The paper "Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery" is available online at http://cancerres.aacrjournals.org/content/75/18/3706.full.

University of Illinois at Urbana-Champaign

Related Cancer Cells Articles:

New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.