Nav: Home

What happens on the molecular level when smog gets into the lungs?

September 16, 2015

Coughing. A sore throat. Maybe a pain in your chest as you take a deep breath.

These are all common symptoms for many city-living Australians when smog levels are high. And while it is well understood that smog can cause such problems, new research has for the first time given us a glimpse as to what might be happening at the molecular level.

The University of Melbourne's Professor Richard O'Hair, from the School of Chemistry's Bio21 Institute, in collaboration with Professor Stephen Blanksby (from the Queensland University of Technology and formerly the University of Wollongong) co-authored a study examining how ozone reacts with models of lung proteins.

Smog is made up of ozone - an invisible gas and a well-known air pollutant made up of three oxygen atoms. Ozone is also the pollutant that leaves a distinctive smell in the air after using a photocopier.

Using a mass spectrometer, the research team was able to introduce the amino acid cysteine - a component of lung proteins - with ozone molecules in a highly-controlled, near-vacuum environment.

The effect was instant, or in scientific terms, close to the "collision rate".

"We observed that the cysteine became 'radicalised' in the presence of ozone," said Professor O'Hair.

"No one had really noticed that you can form free radicals in the reaction of proteins with ozone, and since these are highly reactive species, you don't want them around.

"Free radicals can unleash fury and cause many chemical transformations.

"If they get out of control, they can just chew through a system and destroy it. For example, free radical damage is thought to play a key role in heart disease and some cancers.

"So when free radicals are formed in the body, such as the lining of the lung, damage occurs, that may ultimately result in inflammation and breathing difficulties."

The research pushes forward the understanding of the molecular effect of ozone on proteins. But because the tests were conducted in an artificial environment, more work needs to be done to confirm the creation of protein free radicals in lungs and link their effects on human lung physiology.

Professor O'Hair hopes the research inspires fellow scientists to build on the findings.

Associated research will be of the most benefit to those with asthma, other respiratory illnesses or the young and the elderly who are most susceptible to smog.

"If there is free radical damage to lung proteins, it's unlikely to be reversible, so you won't be able to design a magic-bullet drug to undo the damage," Professor O'Hair said.

"Ozone is the result of pollution. So the message has to go out that we need to be proactive on reducing smog levels and pollution."
-end-
The work was funded by the Australian Research Council Centre for Excellence in Free Radical Chemistry and Biotechnology.

The results have just been published in leading chemistry journal, Angewandte Chemie (Applied Chemistry) International Edition.

University of Melbourne

Related Heart Disease Articles:

Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
More Heart Disease News and Heart Disease Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.