Nav: Home

What happens on the molecular level when smog gets into the lungs?

September 16, 2015

Coughing. A sore throat. Maybe a pain in your chest as you take a deep breath.

These are all common symptoms for many city-living Australians when smog levels are high. And while it is well understood that smog can cause such problems, new research has for the first time given us a glimpse as to what might be happening at the molecular level.

The University of Melbourne's Professor Richard O'Hair, from the School of Chemistry's Bio21 Institute, in collaboration with Professor Stephen Blanksby (from the Queensland University of Technology and formerly the University of Wollongong) co-authored a study examining how ozone reacts with models of lung proteins.

Smog is made up of ozone - an invisible gas and a well-known air pollutant made up of three oxygen atoms. Ozone is also the pollutant that leaves a distinctive smell in the air after using a photocopier.

Using a mass spectrometer, the research team was able to introduce the amino acid cysteine - a component of lung proteins - with ozone molecules in a highly-controlled, near-vacuum environment.

The effect was instant, or in scientific terms, close to the "collision rate".

"We observed that the cysteine became 'radicalised' in the presence of ozone," said Professor O'Hair.

"No one had really noticed that you can form free radicals in the reaction of proteins with ozone, and since these are highly reactive species, you don't want them around.

"Free radicals can unleash fury and cause many chemical transformations.

"If they get out of control, they can just chew through a system and destroy it. For example, free radical damage is thought to play a key role in heart disease and some cancers.

"So when free radicals are formed in the body, such as the lining of the lung, damage occurs, that may ultimately result in inflammation and breathing difficulties."

The research pushes forward the understanding of the molecular effect of ozone on proteins. But because the tests were conducted in an artificial environment, more work needs to be done to confirm the creation of protein free radicals in lungs and link their effects on human lung physiology.

Professor O'Hair hopes the research inspires fellow scientists to build on the findings.

Associated research will be of the most benefit to those with asthma, other respiratory illnesses or the young and the elderly who are most susceptible to smog.

"If there is free radical damage to lung proteins, it's unlikely to be reversible, so you won't be able to design a magic-bullet drug to undo the damage," Professor O'Hair said.

"Ozone is the result of pollution. So the message has to go out that we need to be proactive on reducing smog levels and pollution."
-end-
The work was funded by the Australian Research Council Centre for Excellence in Free Radical Chemistry and Biotechnology.

The results have just been published in leading chemistry journal, Angewandte Chemie (Applied Chemistry) International Edition.

University of Melbourne

Related Heart Disease Articles:

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.
New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.
Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.
Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.
Women once considered low risk for heart disease show evidence of previous heart attack scars
Women who complain about chest pain often are reassured by their doctors that there is no reason to worry because their angiograms show that the women don't have blockages in the major heart arteries, a primary cause of heart attacks in men.
More Heart Disease News and Heart Disease Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...