Nav: Home

UW labs win $4.5 million NSF nanotechnology infrastructure grant

September 16, 2015

The University of Washington and Oregon State University have won a $4.5 million, five-year grant from the National Science Foundation to advance nanoscale science, engineering and technology research in the Pacific Northwest and support a new network of user sites across the country.

The regional partnership was selected as one of 16 sites for a new National Nanotechnology Coordinated Infrastructure (NNCI) program. That network is designed to give researchers from academia, small and large companies and other institutions open access to university facilities with leading-edge fabrication and characterization tools.

Anchored at the UW with additional facilities at OSU, the Pacific Northwest site -- which will also leverage resources at Pacific Northwest National Laboratory, North Seattle College and the University of British Columbia -- will provide critical workhorse tools, unique instruments and key educational support to academic and industrial users, particularly in the clean energy and biotechnology fields.

At the UW, the funding will support the Washington Nanofabrication Facility and the Molecular Analysis Facility. The WNF makes chips with nanoscale-sized features and devices for UW researchers working on everything from better drug delivery to quantum information devices. The "fab lab" also serves outside companies -- ranging from one-person startups to multinational corporations -- that can't affordably or reliably meet their fabrication needs at commercial foundries.

Separately, the WNF will also undergo a $37 million renovation in Fluke Hall over the next year to expand its lab space and better serve those users.

The Molecular Analysis Facility, which opened in 2012, occupies a custom-designed space in the Molecular Engineering & Sciences building that minimizes vibration and electromagnetic interference. It houses a range of microscopy, spectroscopy and surface analysis instrumentation that characterize materials at the nano and molecular scale for applications ranging from biotechnology to clean energy technology.

The MAF employs a group of full-time staff scientists to help design, perform and troubleshoot experiments for users from the UW, other universities and industry.

The new NNCI funding will help support staff salaries, enabling them to expand "unpaid" work such as student mentoring. Current mentoring programs teach skills that are in high demand -- how to calibrate and operate tools used to develop cutting-edge electronics and technologies. The UW will also emphasize outreach to Native American students, one of the most underrepresented groups in science and tech fields.

"Part of our core mission is doing workforce development," said WNF associate director Michael Khbeis. "Most of the clients call me up and say 'I can't find anybody to do this kind of work who lives around here,' so we really try to share what we know to incubate that next generation of highly-skilled employees."

The NNCI funding will also free up staff to develop new lab technologies and train on new instruments before they're ready to serve clients, as well as allow time for basic research.

"We do a lot of training and mentoring and development that we don't bill clients for, so this funding will really take some of the burden off of the staff and help with these unpaid initiatives," Khbeis said.

The NSF grant will also fund new computational initiatives, allowing the labs to partner with data science experts across campus to more accurately model fabrication and nanoscale interactions.

Nationwide, the NSF will provide a total of $81 million in NNCI grants over the next five years. The framework builds on the National Nanotechnology Infrastructure Network, which enabled major discoveries, innovations, and contributions to education and commerce for more than 10 years.

"NSF's long-standing investments in nanotechnology infrastructure have helped the research community to make great progress by making research facilities available," said NSF assistant director for engineering Pramod Khargonekar. "NNCI will serve as a nationwide backbone for nanoscale research, which will lead to continuing innovations and economic and societal benefits."
For more information about the NNCI grant, contact WNF director Karl Böhringer at For information about doing experiments in WNF or MAF, contact Mike Khbeis at or Lara Gamble at

University of Washington

Related Engineering Articles:

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.