Nav: Home

Eco-friendly method for the synthesis of iron oxide nanoparticles

September 16, 2019

A team of scientists from Ural Federal University (Yekaterinburg), Bangladesh University of Engineering and Technology and other collaborator have published an article about a new method for the synthesis of magnetic nanoparticles. Today nanoparticles are used in various fields, from biomedicine to magnetic resonance imaging, data storage systems, environmental reclamation technologies, magnetically controlled liquids, various sensors, and immunoassay systems.

The manufacture of nanomaterials is a popular area today, and like any other industry, it is wanted to be eco-friendly. Scientists work on the so-called green synthesis - environmentally-friendly methods for producing nanomaterials from plant extracts. However, many substances contained in natural materials are unstable and quickly enter into oxidation-reduction reactions with certain components of the environment. Stabilizer is very important substance for newly synthesized nanoparticles which was one of the goals of the study conducted by the team of scientist.

To synthesize iron oxide nanoparticles, the team used inorganic substances such as iron chloride and sodium hydroxide. The scientists also used an extract made of the leaves of Ipomoea aquatica (a plant from the bindweed family) as a stabilizing and reducing agent. It helped prevent the agglutination of the particles and supported their small size.

Besides the green nature of the process, the team paid attention to different properties of the obtained nanoparticles. The ratio between the surface of the particle and its volume played an important role in the reactivity of a magnetic nanoparticles. All these leads to tune the properties that are important for biology and medicine. They also studied the magnetic properties of the nanoparticles stabilized with the Ipomoea aquatica extract. To do so, they placed the particles into an external magnetic field at room temperature and monitored their behavior. The experiments showed certain manifestations of the particles' superparamagnetic nature. This is a special form of magnetism that is observed specifically in nanosized ferromagnetic or ferrimagnetic particles.

According to several studies, it is established that magnetic nature of the nanoparticles enhances the activity of medicines. The team also conducted an experiment to confirm that the new nanoparticles suppressed the growth of bacteria. Thus, the authors claimed that the superparamagnetic nanoparticles at room temperature and their antibacterial properties would make them potential material for biomedical applications.

"Our study of different properties of the new nanoparticles confirmed they met all existing standards. The new methodology is based on plant raw materials and therefore it is eco-friendly", said Hossain Aslam, a research engineer of Ural Federal University.

Magnetite (Fe3O4) nanoparticles (MNPs) have been synthesized through a facile green synthesis route using naturally available Ipomoea aquatica leaf aqueous extract where biomolecules of leaf extract acted as a stabilizer as well as reducing agent. The synthesized MNPs has pronounced antibacterial activity against both Gram-negative and Gram-positive bacteria. The room temperature superparamagnetic nature and antibacterial activity of MNPs demonstrate that it could be potential materials for biomedical applications.

Ural Federal University

Related Nanoparticles Articles:

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at