Sweet success of parasite survival could also be its downfall

September 16, 2019

University of York scientists are part of an international team which has discovered how a parasite responsible for spreading a serious tropical disease protects itself from starvation once inside its human host.

The findings provide a new understanding of the metabolism of the Leishmania parasite and this new knowledge could potentially be used in its eradication. The disease the parasite causes is called Leishmaniasis and it is spread by the bite of sand flies. It kills between 20-40,000 people every year.

In a collaboration between the University of Melbourne and the University of York, researchers found that Leishmania make an unusual carbohydrate reserve, called mannogen, that protects them from fluctuating nutrient levels in the host, enabling their survival.

They then identified a new family of enzymes that use sugars scavenged from the host to make mannogen. University of York researchers defined the 3-D structure of these enzymes and this allowed researchers to map the evolution of this new enzyme family whose members acquired the ability to both make and degrade mannogen, and regulate the metabolism of these pathogens. This knowledge is now being used to identify drug molecules that bind and block enzyme activity and may be used to develop new therapies.

Professor Gideon Davies from the University of York's Department of Chemistry said: "Our three-dimensional structural insight provides new opportunities for drug design against this pathogen. We look forward to targeting the disease in future. The team of PhD students and York Chemistry MChem project students did a fantastic job of the structural analyses."

Professor Malcolm McConville from the University of Melbourne said: "As mannogen metabolism is critical for the survival of these parasites, developing inhibitors to block the enzymes that regulate this carbohydrate store is a potential way to specifically kill Leishmania parasites. We can exploit the parasite's food preference for mannogen and specifically target this metabolic pathway, without side-effects to humans.

"Similar enzymes and carbohydrates are made by other pathogens, such as the bacteria that cause tuberculosis, and this work may contribute to developing new classes of drugs to treat other infectious diseases."

Leishmania are able to persist for many years in their human host by hiding inside immune cells, such as macrophages. Macrophages are normally responsible for killing invading pathogens, but Leishmania are able to avoid this fate and grow stealthily within these host cells, eventually forming large 'granuloma' lesions that can lead to open ulcerating sores, organ damage and, in some cases, death.

Many people who carry the parasite remain asymptomatic, but immunosuppressed individuals, for example those with HIV/AIDs or suffering from malnutrition, are particularly vulnerable. Until recently very little was known about how Leishmania managed to grow within these host cells and resist most antibiotics.

Leishmaniasis is increasing in many regions of the world, including the Middle East, Africa and Central America where there are regional conflicts and breakdown in health services. There is currently no effective vaccine against it.
-end-


University of York

Related Metabolism Articles from Brightsurf:

Early trauma influences metabolism across generations
A study by the Brain Research Institute at UZH reveals that early trauma leads to changes in blood metabolites - similarly in mice and humans.

Cannabinoids decrease the metabolism of glucose in the brain
What happens when THC acts on the glial cells named astrocytes ?

New role of arginine metabolism in plant morphogenesis identified
A research team led by ExCELLS/NIBB found that arginine metabolism has a vital role in regulating gametophore shoot formation in the moss Physcomitrium patens.

Watching changes in plant metabolism -- live
Almost all life on Earth, e.g. our food and health, depend on metabolism in plants.

redHUMAN: Deciphering links between genes and metabolism
Scientists at EPFL have developed a new method that simplifies the processing of genetic-metabolic data by picking up changes in metabolism, a hallmark of numerous diseases like cancer and Alzheimer's.

Lipid metabolism controls brain development
A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

Viruses don't have a metabolism; but some have the building blocks for one
'Giant viruses' are many times larger than typical viruses and have more complex genomes.

New metabolism discovered in bacteria
Microbiologists at Goethe University Frankfurt have discovered how the bacterium Acetobacterium woodii uses hydrogen in a kind of cycle to conserve energy.

Protein controls fat metabolism
A protein in the cell envelope influences the rate of fatty acid uptake in cells.

Read More: Metabolism News and Metabolism Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.