Nav: Home

One step closer future to quantum computers

September 16, 2019

Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements. This theoretical study is a crucial step for advancing the field of topological superconductors and applications of Majorana states for robust quantum computers. New experiments testing this approach are expected next.

Majorana states exist as zero-energy states at the ends of topological superconductors (a special type of superconductors, materials that conduct with zero resistance when cooled close to absolute zero temperature), where low-energy states are robust against defects. Majorana states have exotic properties that make them promising candidates as qubits for fault-tolerant quantum computers. However, in experiments trivial zero-energy states mimicking Majorana states can also appear. The difficulty in telling apart the true and these 'fake' Majoranas is a problem that has hampered the experimental progress in this field of research and has been a thorn in the side of experts.

A solution to this problem has been proposed in a recent study by Annica Black-Schaffer's group. The authors simulated the entire system of one of the most common experimental setups used in engineering topological superconductors as accurately as possible and captured the main effects of all the components. By investigating the supercurrent (the current in superconductors) between two engineered superconductors, they found that there is a sign reversal in the supercurrent due to the trivial 'fake' Majorana state under magnetic field application, whereas such sign reversal is not produced by true Majorana states. They then concluded that supercurrents offer a powerful tool for the unambiguous distinction between trivial states and topological Majorana states.

"This study helps and motivates experimentalists towards the proper identification of topological Majoranas by using supercurrent measurements. Our study shows that we need to carry out more exact modelling," says Jorge Cayao, postdoctoral researcher at Uppsala University.

"It is crucial that we are certain that we have actually engineered Majorana states and not some trivial states. This study presents a way to accomplish that through supercurrent measurements," says Oladunjoye Awoga, PhD student at Uppsala University.
-end-
For more information: Annica Black-Schaffer, Professor at Department of Physics and Astronomy, Uppsala University, Sweden, annica.black-schaffer@physics.uu.se, +46-(0) 76-795 06 49

Jorge Cayao, post doc at Department of Physics and Astronomy, Uppsala University, Sweden, jorge.cayao@physics.uu.se, +46 (0)76-555 04 83

Annica Black-Schaffer's group: http://materials-theory.physics.uu.se/blackschaffer/

Uppsala University

Related Superconductors Articles:

Controlling superconductors with light
IBS scientists has reported a conceptually new method to study the properties of superconductors using optical tools.
Superconductors with 'zeitgeist' -- When materials differentiate between past and future
Physicists at TU Dresden have discovered spontaneous static magnetic fields with broken time-reversal symmetry in a class of iron-based superconductors.
Hydrogen blamed for interfering with nickelate superconductors synthesis
Prof. ZHONG Zhicheng's team at the Ningbo Institute of Materials Technology and Engineering has investigated the electronic structure of the recently discovered nickelate superconductors NdNiO2. They successfully explained the experimental difficulties in synthesizing superconducting nickelates, in cooperation with Prof.
A closer look at superconductors
From sustainable energy to quantum computers: high-temperature superconductors have the potential to revolutionize today's technologies.
Semiconductors can behave like metals and even like superconductors
The crystal structure at the surface of semiconductor materials can make them behave like metals and even like superconductors, a joint Swansea/Rostock research team has shown.
Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.
Study probes relationship between strange metals and high-temperature superconductors
SLAC theorists have observed strange metallicity in a well-known model for simulating the behavior of materials with strongly correlated electrons, which join forces to produce unexpected phenomena rather than acting independently.
Uncovering a new aspect of charge density modulations in high temperature superconductors
Researchers from Chalmers University of Technology and Politecnico di Milano have identified a crucial new aspect of charge density modulations in cuprate high critical temperature superconductors.
Charge fluctuations, a new property in superconductors
An experiment conducted jointly at the ESRF European Synchrotron Radiation Facility by the Politecnico di Milano, National Research Council, the Università La Sapienza di Roma and the Chalmers University of Technology in Gothenburg has revealed a new property of cuprates, so-called high critical temperature superconductors.
Physicists make graphene discovery that could help develop superconductors
When two mesh screens are overlaid, beautiful patterns appear when one screen is offset.
More Superconductors News and Superconductors Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.