Nav: Home

New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team

September 16, 2019

If the idea of flying on battery-powered commercial jets makes you nervous, you can relax a little. Researchers have discovered a practical starting point for converting carbon dioxide into sustainable liquid fuels, including fuels for heavier modes of transportation that may prove very difficult to electrify, like airplanes, ships and freight trains.

Carbon-neutral re-use of CO2 has emerged as an alternative to burying the greenhouse gas underground. In a new study published today in Nature Energy, researchers from Stanford University and the Technical University of Denmark (DTU) show how electricity and an Earth-abundant catalyst can convert CO2 into energy-rich carbon monoxide (CO) better than conventional methods. The catalyst - cerium oxide - is much more resistant to breaking down. Stripping oxygen from CO2 to make CO gas is the first step in turning CO2 into nearly any liquid fuel and other products, like synthetic gas and plastics. The addition of hydrogen to CO can produce fuels like synthetic diesel and the equivalent of jet fuel. The team envisions using renewable power to make the CO and for subsequent conversions, which would result in carbon-neutral products.

"We showed we can use electricity to reduce CO2 into CO with 100 percent selectivity and without producing the undesired byproduct of solid carbon," said William Chueh, an associate professor of materials science and engineering at Stanford, one of three senior authors of the paper.

Chueh, aware of DTU's research in this area, invited Christopher Graves, associate professor in DTU's Energy Conversion & Storage Department, and Theis Skafte, a DTU doctoral candidate at the time, to come to Stanford and work on the technology together.

"We had been working on high-temperature CO2 electrolysis for years, but the collaboration with Stanford was the key to this breakthrough," said Skafte, lead author of the study, who is now a postdoctoral researcher at DTU. "We achieved something we couldn't have separately - both fundamental understanding and practical demonstration of a more robust material."

Barriers to conversion

One advantage sustainable liquid fuels could have over the electrification of transportation is that they could use the existing gasoline and diesel infrastructure, like engines, pipelines and gas stations. Additionally, the barriers to electrifying airplanes and ships - long distance travel and the high weight of batteries - would not be problems for energy-dense, carbon-neutral fuels.

Although plants reduce CO2 to carbon-rich sugars naturally, an artificial electrochemical route to CO has yet to be widely commercialized. Among the problems: Devices use too much electricity, convert a low percentage of CO2 molecules, or produce pure carbon that destroys the device. Researchers in the new study first examined how different devices succeeded and failed in CO2 electrolysis.

With insights gained, the researchers built two cells for CO2 conversion testing: one with cerium oxide and the other with conventional nickel-based catalysts. The ceria electrode remained stable, while carbon deposits damaged the nickel electrode, significantly shortening the catalyst's lifetime.

"This remarkable capability of ceria has major implications for the practical lifetime of CO2 electrolyzer devices," said DTU's Graves, a senior author of the study and visiting scholar at Stanford at the time. "Replacing the current nickel electrode with our new ceria electrode in the next generation electrolyzer would improve device lifetime."

Road to commercialization

Eliminating early cell death could significantly lower the cost of commercial CO production. The suppression of carbon buildup also allows the new type of device to convert more of the CO2 to CO, which is limited to well below 50 percent CO product concentration in today's cells. This could also reduce production costs.

"The carbon-suppression mechanism on ceria is based on trapping the carbon in stable oxidized form. We were able to explain this behavior with computational models of CO2 reduction at elevated temperature, which was then confirmed with X-ray photoelectron spectroscopy of the cell in operation," said Michal Bajdich, a senior author of the paper and an associate staff scientist at the SUNCAT Center for Interface Science & Catalysis, a partnership between the SLAC National Accelerator Laboratory and Stanford's School of Engineering.

The high cost of capturing CO2 has been a barrier to sequestering it underground on a large scale, and that high cost could be a barrier to using CO2 to make more sustainable fuels and chemicals. However, the market value of those products combined with payments for avoiding the carbon emissions could help technologies that use CO2 overcome the cost hurdle more quickly.

The researchers hope that their initial work on revealing the mechanisms in CO2 electrolysis devices by spectroscopy and modeling will help others in tuning the surface properties of ceria and other oxides to further improve CO2 electrolysis.
-end-
Chueh is also a senior fellow at Stanford's Precourt Institute for Energy. Other Stanford co-authors are PhD alumnus Zixuan Guan, postdoc Michael Machala, former postdocs Matteo Monti and Chirranjeevi B. Gopal, and SLAC postdoc Jose A. Garrido Torres. Other DTU co-authors are PhD candidate Lev Martinez, nanolab group leader Eugen Stamate and staff researcher Simone Sanna. The other co-authors are Ethan J. Crumlin, a research scientist at Lawrence Berkeley National Laboratory, and Max Garcia Melchor, an assistant professor at Trinity College, Dublin.

This project was supported by Haldor Topsoe A/S, Innovation Fund Denmark, the Danish Agency for Science, Technology & Innovation and Energinet.dk., the U.S. Department of Energy, the SUNCAT Center and a National Science Foundation CAREER award.

Stanford University

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.