A novel tool to probe fundamental matter

September 16, 2019

Quarks, bosons, electrons ... Identifying elementary constituents of matter, and the manner by which these particles interact with each other, constitutes one of the greatest challenges in modern physical sciences. Resolving this outstanding problem will not only deepen our understanding of the early days of the Universe, but it will also shed some light on exotic states of matter such as superconductors.

Besides gases, liquids and solids, matter can exist in other forms when it is subjected to extreme conditions. Such situations were encountered in the Universe right after the Big Bang, and they can also be mimicked in the laboratory. And while a plethora of elementary particles were discovered in high-energy colliders, complex questions regarding their interactions and the existence of novel states of matter remain unanswered.

In collaboration with the experimental group of Immanuel Bloch, Monika Aidelsburger and Christian Schweizer (Munich), and theorists Eugene Demler and Fabian Grusdt (Harvard), Nathan Goldman and Luca Barbiero (Physics of Complex Systems and Statistical Mechanics, Science Faculty) propose and validate and novel experimental approach by which these rich phenomena can be finely studied. Published in Nature Physics, their work reports on the experimental realization of a "lattice gauge theory", a theoretical model initially proposed by Kenneth Wilson - Nobel Prize in Physics 1982 - to describe the interactions between elementary particles such as quarks and gluons. The authors demonstrate that their experimental setup, an ultracold gas of atoms manipulated by lasers, indeed reproduces the characteristics of such an appealing model. The challenge consisted in implementing well-defined interactions between "matter" particles and "gauge bosons", which are the mediators of fundamental forces. In the cold-atom context, these different types of particles are represented by different atomic states, which can be addressed in a very fine manner using lasers.

This novel experimental approach constitutes an important step for the quantum simulation of more sophisticated theories, which may eventually shed some light on open questions in high-energy and solid-state physics using table-top experiments.
-end-


Université libre de Bruxelles

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.