Nav: Home

Genetically engineered plasmid can be used to fight antimicrobial resistance

September 16, 2019

Washington, DC - September 16, 2019 - Researchers have engineered a plasmid to remove an antibiotic resistance gene from the Enterococcus faecalis bacterium, an accomplishment that could lead to new methods for combating antibiotic resistance. The research is published this week in Antimicrobial Agents and Chemotherapy, a journal of the American Society for Microbiology.

In vitro, and in mouse models, the engineered plasmid removed the antibiotic resistance gene from E. faecalis. In mouse models, it reduced the abundance of the resistance gene threefold..

"Our concern with organisms that cause hospital-acquired infections that are resistant to many clinical antibiotic therapies motivated the research," said co-senior author Breck A. Duerkop, PhD, Assistant Professor of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Center, Aurora.

E. faecalis is part of the normal, benign intestinal flora, but when antibiotics kill off beneficial intestinal flora, E. faecalis can become pathogenic. As such, it can also acquire single or multidrug resistance. Antibiotic resistant E. faecalis infections are a major problem in hospitals.

The mechanism used to remove antibiotic resistance genes is the specialized protein, CRISPR-Cas9. It can make cuts just about anywhere in DNA.

Along with CRISPR-Cas9, RNA sequences homologous to DNA within the antibiotic resistance gene have been added to the engineered plasmid. These RNAs guide the CRISPR-Cas9 to make the cuts in the right places.

Previous work in animal models by co-senior investigator Kelli L. Palmer, PhD, found that CRISPR-Cas9 could prevent intestinal E. faecalis from acquiring resistance genes. Dr. Palmer is Fellow, Cecil H. and Ida Green Chair in Systems Biology Science, Associate Professor of Biological Sciences, University of Texas, Dallas.

The delivery vehicle for the engineered plasmid is a particular strain of E. faecalis, which conjugates with E. faecalis of various different strains. Conjugation is the process whereby bacteria come together to transfer genetic material from one to the other via direct cell to cell contact.

"E. faecalis strains used to deliver these plasmids to drug resistant strains [of E. faecalis] are immune to acquiring drug resistant traits carried by the target cells," said Dr. Duerkop. "The engineered plasmid can significantly reduce the occurrence of antibiotic resistance in the target bacterial population rendering it more susceptible to antibiotics. We envision that this type of system could be used to re-sensitize antibiotic resistant E. faecalis to antibiotics," he said.

Nonetheless, Dr. Duerkop cautioned that it remained possible that E. faecalis could still circumvent the engineered plasmid. Some bacteria have anti-CRISPR systems that can block CRISPR-Cas9 function, and some others have systems that can degrade foreign DNA. "Future studies will need to be done to address such an issue as E. faecalis avoiding the targeting system and under what conditions this may happen," said Dr. Duerkop.
-end-
The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Dna Articles:

In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.