Nav: Home

Uncovering the hidden 'noise' that can kill qubits

September 16, 2019

MIT and Dartmouth College researchers have demonstrated, for the first time, a tool that detects new characteristics of environmental "noise" that can destroy the fragile quantum state of qubits, the fundamental components of quantum computers. The advance may provide insights into microscopic noise mechanisms to help engineer new ways of protecting qubits.

Qubits can represent the two states corresponding to the classic binary bits, a 0 or 1. But, they can also maintain a "quantum superposition" of both states simultaneously, enabling quantum computers to solve complex problems that are practically impossible for classical computers.

But a qubit's quantum "coherence" -- meaning its ability to maintain the superposition state -- can fall apart due to noise coming from environment around the qubit. Noise can arise from control electronics, heat, or impurities in the qubit material itself, and can also cause serious computing errors that may be difficult to correct.

Researchers have developed statistics-based models to estimate the impact of unwanted noise sources surrounding qubits to create new ways to protect them, and to gain insights into the noise mechanisms themselves. But, those tools generally capture simplistic "Gaussian noise," essentially the collection of random disruptions from a large number of sources. In short, it's like white noise coming from the murmuring of a large crowd, where there's no specific disruptive pattern that stands out, so the qubit isn't particularly affected by any one particular source. In this type of model, the probability distribution of the noise would form a standard symmetrical bell curve, regardless of the statistical significance of individual contributors.

In a paper published today in the journal Nature Communications, the researchers describe a new tool that, for the first time, measures "non-Gaussian noise" affecting a qubit. This noise features distinctive patterns that generally stem from a few particularly strong noise sources.

The researchers designed techniques to separate that noise from the background Gaussian noise, and then used signal-processing techniques to reconstruct highly detailed information about those noise signals. Those reconstructions can help researchers build more realistic noise models, which may enable more robust methods to protect qubits from specific noise types. There is now a need for such tools, the researchers say: Qubits are being fabricated with fewer and fewer defects, which could increase the presence of non-Gaussian noise.

"It's like being in a crowded room. If everyone speaks with the same volume, there is a lot of background noise, but I can still maintain my own conversation. However, if a few people are talking particularly loudly, I can't help but lock on to their conversation. It can be very distracting," says William Oliver, an associate professor of electrical engineering and computer science, professor of the practice of physics, MIT Lincoln Laboratory Fellow, and associate director of the Research Laboratory for Electronics (RLE). "For qubits with many defects, there is noise that decoheres, but we generally know how to handle that type of aggregate, usually Gaussian noise. However, as qubits improve and there are fewer defects, the individuals start to stand out, and the noise may no longer be simply of a Gaussian nature. We can find ways to handle that, too, but we first need to know the specific type of non-Gaussian noise and its statistics."

"It is not common for theoretical physicists to be able to conceive of an idea and also find an experimental platform and experimental colleagues willing to invest in seeing it through," says co-author Lorenza Viola, a professor of physics at Dartmouth. "It was great to be able to come to such an important result with the MIT team."

Joining Oliver and Viola on the paper are: first author Youngkyu Sung, Fei Yan, Jack Y. Qiu, Uwe von Lüpke, Terry P. Orlando, and Simon Gustavsson, all of RLE; David K. Kim and Jonilyn L. Yoder of the Lincoln Laboratory; and Félix Beaudoin and Leigh M. Norris of Dartmouth.

Pulse filters

For their work, the researchers leveraged the fact that superconducting qubits are good sensors for detecting their own noise. Specifically, they use a "flux" qubit, which consists of a superconducting loop that is capable of detecting a particular type of disruptive noise, called magnetic flux, from its surrounding environment.

In the experiments, they induced non-Gaussian "dephasing" noise by injecting engineered flux noise that disturbs the qubit and makes it lose coherence, which in turn is then used as a measuring tool. "Usually, we want to avoid decoherence, but in this case, how the qubit decoheres tells us something about the noise in its environment," Oliver says.

Specifically, they shot 110 "pi-pulses" -- which are used to flip the states of qubits -- in specific sequences over tens of microseconds. Each pulse sequence effectively created a narrow frequency "filter" which masks out much of the noise, except in a particular band of frequency. By measuring the response of a qubit sensor to the bandpass-filtered noise, they extracted the noise power in that frequency band.

By modifying the pulse sequences, they could move filters up and down to sample the noise at different frequencies. Notably, in doing so, they tracked how the non-Gaussian noise distinctly causes the qubit to decohere, which provided a high-dimensional spectrum of the non-Gaussian noise.

Error suppression and correction

The key innovation behind the work is carefully engineering the pulses to act as specific filters that extract properties of the "bispectrum," a two-dimension representation that gives information about distinctive time correlations of non-Gaussian noise.

Essentially, by reconstructing the bispectrum, they could find properties of non-Gaussian noise signals impinging on the qubit over time -- ones that don't exist in Gaussian noise signals. The general idea is that, for Gaussian noise, there will be only correlation between two points in time, which is referred to as a "second-order time correlation." But, for non-Gaussian noise, the properties at one point in time will directly correlate to properties at multiple future points. Such "higher-order" correlations are the hallmark of non-Gaussian noise. In this work, the authors were able to extract noise with correlations between three points in time.

This information can help programmers validate and tailor dynamical error suppression and error-correcting codes for qubits, which fixes noise-induced errors and ensures accurate computation.

Such protocols use information from the noise model to make implementations that are more efficient for practical quantum computers. But, because the details of noise aren't yet well-understood, today's error-correcting codes are designed with that standard bell curve in mind. With the researchers' tool, programmers can either gauge how their code will work effectively in realistic scenarios or start to zero in on non-Gaussian noise.

Keeping with the crowded-room analogy, Oliver says: "If you know there's only one loud person in the room, then you'll design a code that effectively muffles that one person, rather than trying to address every possible scenario."
-end-
Written by Rob Matheson, MIT News Office

Related links

Long live the qubit!

http://news.mit.edu/2011/qubit-practical-0602

Generating high-quality single photons for quantum computing

http://news.mit.edu/2019/single-photons-quantum-computing-0514

Physicists record "lifetime" of graphene qubits

http://news.mit.edu/2018/physicists-graphene-qubits-1231

Toward mass-producible quantum computers

http://news.mit.edu/2017/toward-mass-producible-quantum-computers-0526

Massachusetts Institute of Technology

Related Quantum Computers Articles:

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.
Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.
Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.
FEFU scientists developed method to build up functional elements of quantum computers
Scientists from Far Eastern Federal University (FEFU, Vladivostok, Russia), together with colleagues from FEB RAS, China, Hong Kong, and Australia, manufactured ultra-compact bright sources based on IR-emitting mercury telluride (HgTe) quantum dots (QDs), the future functional elements of quantum computers and advanced sensors.
ORNL researchers advance performance benchmark for quantum computers
Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.
Quantum computers learn to mark their own work
A new test to check if a quantum computer is giving correct answers to questions beyond the scope of traditional computing could help the first quantum computer that can outperform a classical computer to be realised.
Blanket of light may give better quantum computers
Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.
One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
More Quantum Computers News and Quantum Computers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.