Nav: Home

Researchers build microscopic biohybrid robots propelled by muscles, nerves

September 16, 2019

CHAMPAIGN, Ill. -- Researchers have developed soft robotic devices driven by neuromuscular tissue that triggers when stimulated by light - bringing mechanical engineering one step closer to developing autonomous biobots.

In 2014, research teams led by mechanical science and engineering professor Taher Saif and bioengineering professor Rashid Bashir at the University of Illinois worked together to developed the first self-propelled biohybrid swimming and walking biobots powered by beating cardiac muscle cells derived from rats.

"Our first swimmer study successfully demonstrated that the bots, modeled after sperm cells, could in fact swim," Saif said. "That generation of singled-tailed bots utilized cardiac tissue that beats on its own, but they could not sense the environment or make any decisions."

In a new study published in the Proceedings of the National Academy of Sciences and led by Saif, the researchers demonstrate a new generation of two-tailed bots powered by skeletal muscle tissue stimulated by on-board motor neurons. The neurons have optogenetic properties: Upon exposure to light, the neurons will fire to actuate the muscles.

"We applied an optogenetic neuron cell culture, derived from mouse stem cells, adjacent to the muscle tissue," Saif said. "The neurons advanced towards the muscle and formed neuromuscular junctions, and the swimmer assembled on its own."

After confirming that the neuromuscular tissue was compatible with their synthetic biobot skeletons, the team worked to optimize the swimmer's abilities.

"We used computational models, led by mechanical science and engineering professor Mattia Gazzola, to determine which physical attributes would lead to the fastest and most efficient swimming," Saif said. "For example, we looked at variations in the number of tails and tail lengths for most efficient design of the biohybrid swimmer."

"Given the fact that biological actuators, or biobots, are not as mature as other technologies, they are unable to produce large forces. This makes their movement hard to control," Gazzola said. "It is very important to carefully design the scaffold the biobots grow around and interact with to make the most out of technology and achieve locomotive functions. The computer simulations we run play a critical role in this task as we can span a number of possible designs and select only the most promising ones for testing in real life."

"The ability to drive muscle activity with neurons paves the way for further integration of neural units within biohybrid systems," Saif said. "Given our understanding of neural control in animals, it may be possible to move forward with biohybrid neuromuscular design by using a hierarchical organization of neural networks."

Saif said he and his team envision this advance leading to the development of multicellular engineered living systems with the ability to respond intelligently to environmental cues for applications in bioengineering, medicine and self-healing materials technologies.

However, the team acknowledges that - like living organisms - no two biohybrid machines will develop to be exactly the same.

"Just like twins are not truly identical, two machines designed to perform the same function will not be the same," Saif said. "One may move faster or heal from damage differently from the other - a unique attribute of living machines."
-end-
The National Science Foundation Science and Technology Center - Emergent Behavior for Integrated Cellular Systems and NSF's Emergent Frontiers in Research and Innovation grant supported this research.

Editor's notes:

To reach Taher Saif, call 217-333-8552; email saif@illinois.edu.

The paper "Neuromuscular actuation of biohybrid motile bots" is from the U. of I. News Bureau

University of Illinois at Urbana-Champaign, News Bureau

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.